I think potentially the reason the StackOverflow answer isn't working is because "overlapping" and "intersecting" are not the exact same thing
How to detect intersection of 3D rectangles that are rotated?
2 views (last 30 days)
Show older comments
Michael Ferguson
on 6 Dec 2022
Answered: Jeffrey Clark
on 6 Dec 2022
I'm working on a program that detects whether 2, 3D rectangles formed from 8 vertices each have volume that intersects between each other.
You can see in my plot the 8 vertices for each cube colored in red and blue, and by inspection they do not overlap.
However, for whatever reason they are incorrectly being treated as intersecting.
My code so far:
A = [1.06890761348719 0.228825482643729 6.59315554806020];
B = [1.44834644922958 2.01394485398281 6.59315554806020];
C = [1.88232205180130 1.92170049205148 7.14104345088730];
D = [1.50288321605895 0.136581120712592 7.14104345088730];
E = [1.38125706283994 0.162433557649978 7.24173471345524];
F = [1.76069589858218 1.94755292898839 7.24173471345524];
G = [1.32672029601073 2.03979729091965 6.69384681062850];
H = [0.947281460268735 0.254677919582385 6.69384681062850];
P1 = [A;B;C;D;E;F;G;H];
A = [2.13936288118597 1.24719872848015 6.52288724067451];
B = [1.62823228878787 2.82673229470654 5.76496624830234];
C = [1.90147565323319 3.17763404084656 6.31198638352805];
D = [2.41260624563123 1.59810047462036 7.06990737590013];
E = [2.27208449737978 1.58908440932306 7.14588335127981];
F = [1.76095390498189 3.16861797554878 6.38796235890797];
G = [1.48771054053678 2.81771622940902 5.84094222368265];
H = [1.99884113293429 1.23818266318445 6.59886321605394];
P2 = [A;B;C;D;E;F;G;H];
% check if there is intersection
c1 = max(P1(:,1)) > min(P2(:,1));
c2 = min(P1(:,1)) < max(P2(:,1));
c3 = max(P1(:,2)) > min(P2(:,2));
c4 = min(P1(:,2)) < max(P2(:,2));
c5 = max(P1(:,3)) > min(P2(:,3));
c6 = min(P1(:,3)) < max(P2(:,3));
[X,Y,Z] = deal(nan);
if c1 && c2 && c3 && c4 && c5 && c6
X(1) = max(min(P1(:,1)),min(P2(:,1)));
X(2) = min(max(P1(:,1)),max(P2(:,1)));
Y(1) = max(min(P1(:,2)),min(P2(:,2)));
Y(2) = min(max(P1(:,2)),max(P2(:,2)));
Z(1) = max(min(P1(:,3)),min(P2(:,3)));
Z(2) = min(max(P1(:,3)),max(P2(:,3)));
disp('there is an intersection');
else
disp('there is no intersection');
end
plot3(P1(:,1),P1(:,2),P1(:,3),'.b')
hold on
plot3(P2(:,1),P2(:,2),P2(:,3),'.r')
hold off
h = legend('cube1','cube2','intersection cube');
set(h,'orientation','horizontal','location','north')
axis equal vis3d
xlabel('x');
ylabel('y');
zlabel('z');
Accepted Answer
Jeffrey Clark
on 6 Dec 2022
@Michael Ferguson, You can try the attached delaunayTriangulationIntersect.m function that I use to look for intersection of solids. This is your code showing your case and my slightly modified intersection case (also see attached figures):
A1 = [1.06890761348719 0.228825482643729 6.59315554806020];
B1 = [1.44834644922958 2.01394485398281 6.59315554806020];
C1 = [1.88232205180130 1.92170049205148 7.14104345088730];
D1 = [1.50288321605895 0.136581120712592 7.14104345088730];
E1 = [1.38125706283994 0.162433557649978 7.24173471345524];
F1 = [1.76069589858218 1.94755292898839 7.24173471345524];
G1 = [1.32672029601073 2.03979729091965 6.69384681062850];
H1 = [0.947281460268735 0.254677919582385 6.69384681062850];
P1 = [A1;B1;C1;D1;E1;F1;G1;H1];
DT1 = delaunayTriangulation(P1);
A2 = [2.13936288118597 1.24719872848015 6.52288724067451];
B2 = [1.62823228878787 2.82673229470654 5.76496624830234];
C2 = [1.90147565323319 3.17763404084656 6.31198638352805];
D2 = [2.41260624563123 1.59810047462036 7.06990737590013];
E2 = [2.27208449737978 1.58908440932306 7.14588335127981];
F2 = [1.76095390498189 3.16861797554878 6.38796235890797];
G2 = [1.48771054053678 2.81771622940902 5.84094222368265];
H2 = [1.99884113293429 1.23818266318445 6.59886321605394];
P2 = [A2;B2;C2;D2;E2;F2;G2;H2];
DT2 = delaunayTriangulation(P2);
figure
tetramesh(DT1,'FaceAlpha',0.05,'FaceColor','r');
hold on
tetramesh(DT2,'FaceAlpha',0.05,'FaceColor','b');
DTint = delaunayTriangulationIntersect(DT1,DT2);
if isempty(DTint.Points)
disp("No intersect of DT1 and DT2")
else
tetramesh(DTint,'FaceColor','g');
end
% Make intersecting case
D2F2m = mean([D2;F2]);
C1a = D2F2m+[0,0,0.1];
F1a = D2F2m-[0,0,0.1];
P1a = [A1;B1;C1a;D1;E1;F1a;G1;H1];
DT1a = delaunayTriangulation(P1a);
figure
tetramesh(DT1a,'FaceAlpha',0.05,'FaceColor','r');
hold on
tetramesh(DT2,'FaceAlpha',0.05,'FaceColor','b');
DTint = delaunayTriangulationIntersect(DT1a,DT2);
if isempty(DTint.Points)
disp("No intersect of DT1a and DT2")
else
tetramesh(DTint,'FaceColor','g');
end
0 Comments
More Answers (0)
See Also
Categories
Find more on Line Plots in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!