It is necessary to sum the functional sequence F(t) by 'n', while at each step of summation it is necessary to take 'n' from another array n(t).
1 view (last 30 days)
Show older comments
It is necessary to sum the functional sequence F(t) by 'n', while at each step of summation it is necessary to take 'n' from another array n(t) I mean nD(t).
%% initial conditions
global d k0 h_bar ksi m E;
Ef = 2.77*10^3;
Kb = physconst('boltzmann'); % 1.38*10^(-23)
T = 0.12:0.24:6.4;
m = 9.1093837*10^(-31);
Tc = 1.2;
%t = T./Tc;
t = 0.1:0.1:2;
nD = floor(375./(2.*pi.*t.*1.2) - 0.5);
D = 10^(-8); % толщина пленки
ksi = 10^(-9);
%d = D/ksi;
d = 1000;
E = Ef/(pi*Kb*Tc);
h_bar = (1.0545726*10^(-34));
k0 = (ksi/h_bar)*sqrt(2.*m.*pi.*Kb.*Tc);
C_2 = 0;
for n = 0:49
C_2 = C_2 + (1/(2.*n+1)).*k0.*real(sqrt(3601+1i.*(2.*n+1))-((1+1i)./sqrt(2)).*sqrt(2.*n+1)); % константа
end
%% calculation
F = f_calc(t);
plot(t,F, '-r');
%% F(t)
function F = f_calc(t)
global d k0 h_bar ksi m;
F = 0;
for i = 1:20
n = nD(1,i);
F = F + 1/(2*n+1).*(k0.*real(((f_p1(n,t)-f_p2(n,t))./2))+(f_arg_2(n,t)-f_arg_1(n,t))./d);
end
F = -F;
%F = -(1/d).*F;
%F = F - C_2;
end
function p1 = f_p1(n,t)
p1 = ((1+1i)./sqrt(2)).*sqrt(t.*(2.*n+1));
end
function p2 = f_p2(n,t)
global E;
p2 = sqrt(3601+1i.*t.*(2.*n+1));
end
function n_lg = f_lg(n,t)
global d k0;
arg_of_lg = (1+exp(-1i*d*k0.*f_p1(n,t)))/(1+exp(-1i*d*k0.*f_p2(n,t)));
n_lg = log(abs(arg_of_lg));
end
function arg_1 = f_arg_1(n,t)
global d k0;
arg_1 = angle(1+exp(-1i*d*k0.*f_p1(n,t)));
end
function arg_2 = f_arg_2(n,t)
global d k0;
arg_2 = angle(1+exp(-1i*d*k0.*f_p2(n,t)));
end
0 Comments
Answers (1)
Voss
on 8 Jan 2023
Redefine the function f_calc to take nD as its second argument. (You could also make nD a global variable.) See below:
%% initial conditions
global d k0 h_bar ksi m E;
Ef = 2.77*10^3;
Kb = physconst('boltzmann'); % 1.38*10^(-23)
T = 0.12:0.24:6.4;
m = 9.1093837*10^(-31);
Tc = 1.2;
%t = T./Tc;
t = 0.1:0.1:2;
nD = floor(375./(2.*pi.*t.*1.2) - 0.5);
D = 10^(-8); % толщина пленки
ksi = 10^(-9);
%d = D/ksi;
d = 1000;
E = Ef/(pi*Kb*Tc);
h_bar = (1.0545726*10^(-34));
k0 = (ksi/h_bar)*sqrt(2.*m.*pi.*Kb.*Tc);
C_2 = 0;
for n = 0:49
C_2 = C_2 + (1/(2.*n+1)).*k0.*real(sqrt(3601+1i.*(2.*n+1))-((1+1i)./sqrt(2)).*sqrt(2.*n+1)); % константа
end
%% calculation
F = f_calc(t,nD);
plot(t,F, '-r');
%% F(t)
function F = f_calc(t,nD)
global d k0 h_bar ksi m;
F = 0;
for i = 1:20
n = nD(1,i);
F = F + 1/(2*n+1).*(k0.*real(((f_p1(n,t)-f_p2(n,t))./2))+(f_arg_2(n,t)-f_arg_1(n,t))./d);
end
F = -F;
%F = -(1/d).*F;
%F = F - C_2;
end
function p1 = f_p1(n,t)
p1 = ((1+1i)./sqrt(2)).*sqrt(t.*(2.*n+1));
end
function p2 = f_p2(n,t)
global E;
p2 = sqrt(3601+1i.*t.*(2.*n+1));
end
function n_lg = f_lg(n,t)
global d k0;
arg_of_lg = (1+exp(-1i*d*k0.*f_p1(n,t)))/(1+exp(-1i*d*k0.*f_p2(n,t)));
n_lg = log(abs(arg_of_lg));
end
function arg_1 = f_arg_1(n,t)
global d k0;
arg_1 = angle(1+exp(-1i*d*k0.*f_p1(n,t)));
end
function arg_2 = f_arg_2(n,t)
global d k0;
arg_2 = angle(1+exp(-1i*d*k0.*f_p2(n,t)));
end
0 Comments
See Also
Categories
Find more on Matrix Indexing in Help Center and File Exchange
Products
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!