Fast computation of entries of large matrix
5 views (last 30 days)
Show older comments
Hey guys,
I'm working on a problem with creating very large matrices (in the real problem the size is nearly 2500 x 2400). The computation can be seen below in the small example. Because I have to do this computation several thousand times, I'm wondering, if there is any faster way to get the same result, maybe by using parallel computing, gpu computing, etc.
I tried to vectorize the calculation, but I found no proper way, which was faster in the end.
I'm glad for any help :)
x1=rand(2500,5); % some matrix with high number of rows and small number of columns > 1
x2=rand(2400,5); % another matrix with nearly same size as x1
sigma=[1,2,3,4,5]; % some parameter which is either a scalar or a vector,
% whose length is identical to the number of columns as x1 & x2
% prepare the resulting matrix (2500 x 2400)
X=zeros(length(x1(:,1)),length(x2(:,1))); % preallocation of storage
% calculate the entries:
tic
for i=1:length(x1(:,1))
for j=1:length(x2(:,1))
X(i,j)=exp( sum( -1./(sigma.^2) * ((x1(i,:)-x2(j,:)).^2)' ) );
% sum() is necessary because of the changing length of sigma
end
end
toc
4 Comments
Accepted Answer
Matt J
on 17 Jan 2023
x1=rand(2500,5); % some matrix with high number of rows and small number of columns > 1
x2=rand(2400,5); % another matrix with nearly same size as x1
sigma=[1,2,3,4,5]; % some parameter which is either a scalar or a vector,
% whose length is identical to the number of columns as x1 & x2
tic;
X= exp(-pdist2(x1./sigma,x2./sigma).^2);
toc
1 Comment
Jan
on 17 Jan 2023
You can save the time for the squareroots also:
x1=rand(2500,5); % some matrix with high number of rows and small number of columns > 1
x2=rand(2400,5); % another matrix with nearly same size as x1
sigma=[1,2,3,4,5]; % some parameter which is either a scalar or a vector,
% whose length is identical to the number of columns as x1 & x2
tic;
X = exp(-pdist2(x1./sigma,x2./sigma).^2);
toc
tic;
Y = exp(-pdist2(x1./sigma,x2./sigma, 'squaredeuclidean'));
toc
max(abs(X-Y), [], 'all')
More Answers (1)
Jan
on 17 Jan 2023
Edited: Jan
on 17 Jan 2023
n = 2500;
x1=rand(n, 5); % some matrix with high number of rows and small number of columns > 1
x2=rand(n, 5); % another matrix with same size as x1
sigma=[1,2,3,4,5]; % some parameter which is either a scalar or a vector,
% whose length is identical to the number of columns as x1 & x2
X = zeros(n, n); % preallocation of storage
tic
v = -1./(sigma.^2);
for j = 1:n
w = x2(j, :);
for i = 1:n
X(i,j) = exp(v * ((x1(i, :) - w).^2).');
end
end
toc
This runs with about the double speed. Then comment "sum() is necessary because of the changing length of sigma" is strange: sigma seems to be a constant?! Then the argument of the sum is a scalar in all cases, such that the sum can be omitted.
Matt J's pdist2 apporach ist much faster.
0 Comments
See Also
Categories
Find more on Loops and Conditional Statements in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!