how can we decreases the length of the quiver? so that the tail get smaller but head shouldn't move.

2 views (last 30 days)
X1 = [0.00246236309072327 0.00222132983511081 0.00176285733832268 0.00113182408271022 0.000390000000000000 -0.000389999999999999 -0.00113182408271022 -0.00176285733832268 -0.00222132983511081 -0.00246236309072327 -0.00246236309072327 -0.00222132983511081 -0.00176285733832268 -0.00113182408271022 -0.000390000000000000 0.000389999999999999 0.00113182408271022 0.00176285733832268 0.00222132983511081 0.00246236309072327];
Y1 = [0.000390000000000000 0.00113182408271022 0.00176285733832268 0.00222132983511081 0.00246236309072327 0.00246236309072327 0.00222132983511081 0.00176285733832268 0.00113182408271022 0.000390000000000000 -0.000389999999999999 -0.00113182408271022 -0.00176285733832268 -0.00222132983511081 -0.00246236309072327 -0.00246236309072327 -0.00222132983511081 -0.00176285733832268 -0.00113182408271022 -0.000390000000000000];
quiver(X1(1,1),Y1(1,1))
axis equal
for j = 2:20
hold on
quiver(X1(1,j),Y1(1,j))
hold off
end

Answers (1)

Askic V
Askic V on 27 Jan 2023
I would do with a different approcah to have more fexibility and control over how vectors would look like.
Here is a sample code:
clear
clc
close all
xc = 1; % x center coordinate
yc = 1; % y center coordinate
r = 0.2; % radius
angles = linspace(0, 360, 10);
x = r*cosd(angles)+xc;
y = r*sind(angles)+yc;
figure
hold on;
for i = 1: numel(x)
quiver(xc,yc, x(i)-xc,y(i)-yc,'off');
end

Categories

Find more on Vector Fields in Help Center and File Exchange

Tags

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!