coupled ode for 2nd order
    3 views (last 30 days)
  
       Show older comments
    
I have coupled differential equations:
a(r) \sin ^{4} f+2 \cot (f) a_{r} f_{r}+\frac{a_{r}}{r}-a_{r r}=0,{l}\lambda_{0} r(1-\cos f) \sin f\left(\cos f-\cos ^{2} f+\sin ^{2} f\right) \\ \quad+\frac{a^{2} \cos f \sin f}{r}-\frac{\cot f \csc ^{2} f a_{r}^{2}}{r}-f_{r}-r f_{r r}=0
with certain boundary conditions.
1 Comment
  Torsten
      
      
 on 7 Feb 2023
				Please put your equations, initial and boundary conditions into a readable format.
Answers (1)
  Torsten
      
      
 on 7 Feb 2023
        
      Edited: Torsten
      
      
 on 7 Feb 2023
  
      I didn't compare equations and boundary conditions with those listed above.
% Defining parameters
delta = 0.02;        % Lower integral bound
R = 5;             % Upper integral bound
theta = 0;          % ArcTan(q/g)
maxPoints = 1e6;    % Maximum numer of grid point used by bvpc4
initialPoints = 10; % Number of initial grid points used by bvpc4
tol = 1e-3;         % Maximum allowed relative error.
L = 10;
N = 2;
n = 0;
m = 0;
g = 5;
lambda = 0;
% Boundary conditions
y0 = [0, -1, N*pi, 0];
% Initial conditions 
A = @(xi) (1-tanh(((L*xi)/R)-(L/3)))/2;
dA = cosh(theta)*(coth(delta)-delta*csch(delta)^2);
F = @(xi) (1+tanh(((L*xi)/R)-(L/3)))/2;
dF = (1-delta*coth(delta))*csch(delta);
solinit = bvpinit(linspace(delta, R, initialPoints), [A(delta), F(delta), dA,dF]);
% Solves system using bvpc4
options = bvpset('RelTol', tol, 'NMax', maxPoints); % This function sets the allowed
    %relative error and maximum number of grid points.  
sol = bvp4c(@(xi, y) heatGauge(xi, y, lambda, g, m, n), @(ya, yb) bcheatGauge(ya, yb, y0),...
    solinit, options);
xi = linspace(delta, R, 1e4);
y = deval(sol, xi);
plot(xi,y)
function dy1 = heatGauge(xi, y, lambda, g, m, n)
  dy1 = [y(3)...
         y(4)...
         y(3)./xi + (g^2 * (1+y(1)) * (1+(lambda^2*y(4)^2)) * sin(y(2))^2)...
         (1./(1+(lambda^2*(n*(y(1)+1)./xi).^2*sin(y(2))^2))) .* ( ((sin(y(2))*cos(y(2))*(n*(y(1)+1)./xi).^2) + (m^2*sin(y(2)))) - (y(4)./xi).*( ((lambda^2*(n*(y(1)+1)./xi)*sin(y(2))^2).*((n*(y(1)+1)./xi)+(2*xi.*(((xi*n*y(3))-(n*y(1))-n)./xi.^2)))) + 1 + (lambda^2*y(4)*xi.*(n*(y(1)+1)./xi).^2.*sin(y(2))*cos(y(2))) ) ) ];
end
function res = bcheatGauge(ya, yb, y0)
  res = [ya(1) - y0(1);yb(1) - y0(2);ya(2) - y0(3);yb(2) - y0(4)];
end
3 Comments
  Torsten
      
      
 on 7 Feb 2023
				
      Edited: Torsten
      
      
 on 7 Feb 2023
  
			Then you should remember what changes you made to the function because this one worked:
  dy1 = [y(3)...
         y(4)...
         y(3)./xi + (g^2 * (1+y(1)) * (1+(lambda^2*y(4)^2)) * sin(y(2))^2)...
         (1./(1+(lambda^2*(n*(y(1)+1)./xi).^2*sin(y(2))^2))) .* ( ((sin(y(2))*cos(y(2))*(n*(y(1)+1)./xi).^2) + (m^2*sin(y(2)))) - (y(4)./xi).*( ((lambda^2*(n*(y(1)+1)./xi)*sin(y(2))^2).*((n*(y(1)+1)./xi)+(2*xi.*(((xi*n*y(3))-(n*y(1))-n)./xi.^2)))) + 1 + (lambda^2*y(4)*xi.*(n*(y(1)+1)./xi).^2.*sin(y(2))*cos(y(2))) ) ) ];
Maybe because the ... are missing in the third line ?
And remember that in your new code, you use cot(x) which is Inf at all multiples of pi. This can easily lead to a singular Jacobian.
See Also
Categories
				Find more on Numerical Integration and Differential Equations in Help Center and File Exchange
			
	Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!

