How to plot 2 functions into one plot
6 views (last 30 days)
Show older comments
Mason Condren
on 16 Feb 2023
Here below is my code, I am trying to get Q1 and Q2 to show up on the same plot while differentiating between the two. The graph should look like the one attached.

=============================================================================================================
% density
p = 1.009;
%dynamic visc
mew = 3.09e-5;
%width
w = 0.022;
%delta Pressure
delP = 31.1;
cp = 1008;
k = 0.02953;
Pr = 0.7154;
%kinematic visc
v = 2.097e-5;
%t optimal
t = 0.001011;
L = 0.022;
%L_opt
H = 0.022477;
%buoyancy
B = (1/350);
%alpha
a = 2.931e-5;
syms D;
eqn = (1/12)*(1/mew)*p^(4/3)*D^3*w^(-4/3)*delP^(2/3)*cp == 1.20818*k*Pr^(1/3)*v^(-2/3)*((D+t)/(L+t))^(1/3)*L^(1/3)
D_opt = vpasolve(eqn,D)
Q1 = ((L+t)/(D+t))*((p*B*9.81*w*cp*(134-20)^2*D^3)/(12*v));
Q2 = 1.034*k*w*(134-20)*((1/(a*v))*B*9.81*H^3*(134-20)^(1/4)*((L+t)/(D+t)));
fplot(Q1)
fplot(Q2)
=============================================================================================================
1 Comment
Accepted Answer
Sulaymon Eshkabilov
on 16 Feb 2023
Here is a code that shows the plot figure similar to the assignment:
% density
p = 1.009;
%dynamic visc
mew = 3.09e-5;
%width
w = 0.022;
%delta Pressure
delP = 31.1;
cp = 1008;
k = 0.02953;
Pr = 0.7154;
%kinematic visc
v = 2.097e-5;
%t optimal
t = 0.001011;
L = 0.022;
%L_opt
H = 0.022477;
%buoyancy
B = (1/350);
%alpha
a = 2.931e-5;
syms D;
eqn = (1/12)*(1/mew)*p^(4/3)*D^3*w^(-4/3)*delP^(2/3)*cp == 1.20818*k*Pr^(1/3)*v^(-2/3)*((D+t)/(L+t))^(1/3)*L^(1/3)
D_opt = vpasolve(eqn,D);
Q1 = ((L+t)/(D+t))*((p*B*9.81*w*cp*(134-20)^2*D^3)/(12*v));
Q2 = 1.034*k*w*(134-20)*((1/(a*v))*B*9.81*H^3*(134-20)^(1/4)*((L+t)/(D+t)));
fplot(Q1, 'r-', 'linewidth', 2);
hold on
fplot(Q2, 'b-', 'linewidth', 2);
xlim([0 0.025]),
ylim([-50, 500]),shg
grid on
xlabel('D, [mm]')
ylabel('Heat Transfer, [W]')
2 Comments
More Answers (0)
See Also
Categories
Find more on Calculus in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!
