what should i do with this error on cross validation?
1 view (last 30 days)
Show older comments
i newer to matlab and i want to perform cross validation on my image dataset and i use below code for it:
path_to_images = "*\Rice_Image_Dataset";
image_datastore = imageDatastore(path_to_images, "IncludeSubfolders", true, "LabelSource", "foldernames");
% Split the data into train, validation, and test sets
[train, validation, test] = splitEachLabel(image_datastore, 0.6, 0.2, 0.2, 'randomized');
numFolds = 5;
cv = cvpartition(train.Labels, 'KFold', numFolds);
nets = cell(1, numFolds);
accuracies = zeros(1, numFolds);
for i = 1:numFolds
trainIdx = training(cv, i);
valIdx = test(cv, i);
trainData = subset(train, trainIdx);
valData = subset(train, valIdx);
rsz_train = augmentedImageDatastore([224 224 3], trainData);
rsz_val = augmentedImageDatastore([224 224 3], valData);
augmentedTrainDatastore = augmentedImageDatastore([224 224 3], trainData, 'ColorPreprocessing', 'gray2rgb');
augmentedValDatastore = augmentedImageDatastore([224 224 3], valData, 'ColorPreprocessing', 'gray2rgb');
opts = trainingOptions("sgdm", ...
"ExecutionEnvironment", "auto", ...
"InitialLearnRate", 0.01, ...
"MaxEpochs", 5, ...
"MiniBatchSize", 64, ...
"Shuffle", "every-epoch", ...
"ValidationFrequency", 70, ...
"Plots", "training-progress", ...
"ValidationData", rsz_val, ...
"Momentum", 0.9);
[net, traininfo] = trainNetwork(augmentedTrainDatastore, lgraph_1, opts);
nets{i} = net;
true_val_labels = valData.Labels;
pred_val_labels = classify(net, augmentedValDatastore);
accuracies(i) = mean(true_val_labels == pred_val_labels);
end
% Compute average accuracy over all folds
averageAccuracy = mean(accuracies);
but i recieved the following error:
Array formation and parentheses-style indexing with objects of class 'matlab.io.datastore.ImageDatastore' is not allowed. Use objects of class
'matlab.io.datastore.ImageDatastore' only as scalars or use a cell array.
could you plz help me with that.
0 Comments
Accepted Answer
Aniketh
on 12 Jul 2023
Hi Amir, to resolve the error, modify the following lines in your code:
trainData = subset(train, trainIdx);
valData = subset(train, valIdx);
to
trainData = subset(train, trainIdx);
valData = subset(train, valIdx);
By using image_datastore instead of train, you ensure that the subset function operates on the imageDatastore object as intended.
Hope that helped your case!
0 Comments
More Answers (0)
See Also
Categories
Find more on Material Sciences in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!