Can anybody help me to code boundary conditions in MATLAB for Keller Box Method?
20 views (last 30 days)
Show older comments
Can anybody help me to code boundary conditions in MATLAB for Keller Box Method?
f^'=1,f=S,θ^'=-r_1 [1+θ],ϕ^'=-r_2 [1+ϕ] at η=0
f^'=0,f^''=0,θ=0,ϕ=0 as η→∞
1 Comment
vijayakumar
on 30 Oct 2024
how to set MATLAB code for velocity slip and temperature slip boundary condition for kelller box method please help me out
at eta=0, f(eta)=0, f^'(eta)=SF*f^''(eta), theta=1+ST*theta^'(eta)
at eta=infinite, f^'=0, theta=0
Answers (2)
Mrutyunjaya Hiremath
on 6 Aug 2023
% Define parameters
r_1 = 0.1;
r_2 = 0.2;
S = 2.0;
% Define the differential equations
% y(1) = f, y(2) = f', y(3) = θ, y(4) = ϕ
ode_system = @(eta, y) [y(2); 1; y(3); y(4)];
% Define the boundary conditions at η = 0
initial_conditions = [S, 1, 0, 0];
% Define the boundary conditions at η → ∞
eta_infinity = 100; % Choose a large value
final_conditions = [0, 0, 0, 0];
% Solve the differential equations
[eta, result] = ode45(ode_system, [0, eta_infinity], initial_conditions);
% Extract the solutions
f = result(:, 1);
f_prime = result(:, 2);
theta = result(:, 3);
phi = result(:, 4);
% Plot the solutions
subplot(2, 2, 1);
plot(eta, f);
xlabel('η');
ylabel('f');
title('f vs. η');
subplot(2, 2, 2);
plot(eta, f_prime);
xlabel('η');
ylabel("f'");
title("f' vs. η");
subplot(2, 2, 3);
plot(eta, theta);
xlabel('η');
ylabel('θ');
title('θ vs. η');
subplot(2, 2, 4);
plot(eta, phi);
xlabel('η');
ylabel('ϕ');
title('ϕ vs. η');
7 Comments
Torsten
on 7 Aug 2023
It should be clear that we won't program this for you.
If you have a boundary value problem as above, you can use the MATLAB tools "bvp4c" or "bvp5c".
If your problem is an assignment, you will have to start programming it in MATLAB or make a google search whether you find a MATLAB code that fits your needs.
Thiripura Sundari
on 27 Sep 2024
Good evening Professor, Shall we give matlab bvp4c code in jeffrey fluid thank you.
Santosh Devi
on 27 Feb 2024
f^''' (η)+ff^'' (η)-(f^' (η))^2+Mf^' (η)-λf(η)=0
■θ^'' (η)+Pr[f(η)θ^' (η)-b/(u_w^2 ) ηθ(η)+Ec(f^'' (η))^2+Q_0 θ(η)]=0
■ϕ^'' (η)+Sc[f(η) ϕ^' (η)-Kϕ(η)]=0
■f(0)=s,f^' (0)=1,θ(0)=1,ϕ(0)=1
■f^' (∞)→0,θ(∞)→0,ϕ(∞)→0
5 Comments
Thiripura Sundari
on 22 Oct 2024
Good afternoon Professor, can please give fourth order jeffrey fluid using keller box method
See Also
Categories
Find more on Fluid Dynamics in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!