How do you solve a coupled ODE when one of the ODE results in a vector of length 3 and the other results in a scalar of length 1?
1 view (last 30 days)
Show older comments
For instance, in the following example that I found online, if dz(2) were actually a vector, how would you modify this?
[v z] = ode45(@myode,[0 500],[0 1]);
function dz = myode(v,z)
alpha = 0.001;
C0 = 0.3;
esp = 2;
k = 0.044;
f0 = 2.5;
dz = zeros(2,1);
dz(1) = k*C0/f0*(1-z(1)).*z(2)./(1-esp*z(1));
dz(2) = -alpha*(1+esp*z(1))./(2*z(2));
end
0 Comments
Accepted Answer
Torsten
on 5 Oct 2023
Edited: Torsten
on 5 Oct 2023
All solution components have to be aggregated in one big vector z, and also the derivatives have to be supplied in this vector form. E.g. if the unknows were composed of a vector x of length 4 and a vector y of length 7, you had to work with vectors z and dz of length 4 + 7 = 11.
4 Comments
Torsten
on 5 Oct 2023
Edited: Torsten
on 5 Oct 2023
Let x be a scalar and y a vector of length 2.
Let the equations be
dx/dt = x
dy1/dt = 2*y1
dy2/dt = 3*y2
with initial conditions
x(0) = 1,
y1(0) = 2,
y2(0) = 3.
Then you can set up the problem as
x0 = 1;
y10 = 2;
y20 = 3;
z0 = [x0;[y10;y20]];
tspan = [0 1];
[T,Z] = ode45(@fun,tspan,z0);
X = Z(:,1);
Y = Z(:,2:3);
figure(1)
plot(T,X)
figure(2)
plot(T,Y)
function dzdt = fun(t,z)
x = z(1);
y = z(2:3);
dxdt = x;
dydt = [2*y(1);3*y(2)];
dzdt = [dxdt;dydt];
end
More Answers (0)
See Also
Categories
Find more on Ordinary Differential Equations in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!