Why are my plots for K values and initial conditions all the same colour even with hold on

1 view (last 30 days)
% Mesh Grid in (Diamtoms(D),Zooplankton(P))-plane
[D, P] = meshgrid(-0.8:1:10, -0.8:1:10);
% Parameters
hold on
for K=1:10;
s=1;
e=1;
r=1;
H=1;
d=0.75;
% System as a 2-D function
f = @(t,X) [X(1)*(r*(1-X(1)*(1/K))-(s*X(1)/1+s*H*X(1))*X(2));
X(2)*(e*(s*X(1))/(1+s*H*X(1))-d)];
%Direction Filed
% Ddot is dD/dt and Pdot is dP/dt derivatives
Ddot = D-(1./K).*D.*D-(s*D)./((1+s.*H.*D)).*P;
Pdot = P.*((s.*D)./(1+s.*H.*D))-P.*d;
% Vector Field
figure(1)
quiver(D,P,Ddot,Pdot,'k','LineWidth',1.5)
timespan=[0 100];
% Phase Trajectories
X0=0.5*K*rand;Y0=K*rand;
[ts, Xs] = ode45(f,timespan, [X0, Y0]);
% plot of several trajectories
plot(Xs(:,1), Xs(:,2),'k', 'Linewidth', 2)
xlabel('Prey, D', 'FontSize',14)
ylabel('Predator, P', 'FontSize',14)
set(gca, 'FontSize', 16)
xlim([-0.8 10])
ylim([-0.8 10])
end
  1 Comment
Beñat Arribas
Beñat Arribas on 31 Oct 2023
The 'k' defines the color of the plots, which is equivalent to black color. Removing this will turn between the different colors set by default.
quiver(D,P,Ddot,Pdot,'k','LineWidth',1.5)
plot(Xs(:,1), Xs(:,2),'k', 'Linewidth', 2)

Sign in to comment.

Accepted Answer

Voss
Voss on 31 Oct 2023
They are all the same color because you have specified them all to be black when you plotted them. The 'k' means black in, e.g.:
quiver(D,P,Ddot,Pdot,'k','LineWidth',1.5)
% ...
plot(Xs(:,1), Xs(:,2),'k', 'Linewidth', 2)
Removing the 'k' gives lines with different colors:
% Mesh Grid in (Diamtoms(D),Zooplankton(P))-plane
[D, P] = meshgrid(-0.8:1:10, -0.8:1:10);
% Parameters
hold on
for K=1:10;
s=1;
e=1;
r=1;
H=1;
d=0.75;
% System as a 2-D function
f = @(t,X) [X(1)*(r*(1-X(1)*(1/K))-(s*X(1)/1+s*H*X(1))*X(2));
X(2)*(e*(s*X(1))/(1+s*H*X(1))-d)];
%Direction Filed
% Ddot is dD/dt and Pdot is dP/dt derivatives
Ddot = D-(1./K).*D.*D-(s*D)./((1+s.*H.*D)).*P;
Pdot = P.*((s.*D)./(1+s.*H.*D))-P.*d;
% Vector Field
figure(1)
quiver(D,P,Ddot,Pdot, 'LineWidth',1.5)
timespan=[0 100];
% Phase Trajectories
X0=0.5*K*rand;Y0=K*rand;
[ts, Xs] = ode45(f,timespan, [X0, Y0]);
% plot of several trajectories
plot(Xs(:,1), Xs(:,2), 'Linewidth', 2)
xlabel('Prey, D', 'FontSize',14)
ylabel('Predator, P', 'FontSize',14)
set(gca, 'FontSize', 16)
xlim([-0.8 10])
ylim([-0.8 10])
end
  1 Comment
Voss
Voss on 31 Oct 2023
Also, you can move those things that don't depend on the value of the variable K out of the for loop:
% Mesh Grid in (Diamtoms(D),Zooplankton(P))-plane
[D, P] = meshgrid(-0.8:1:10, -0.8:1:10);
% Parameters
s=1;
e=1;
r=1;
H=1;
d=0.75;
timespan=[0 100];
Pdot = P.*((s.*D)./(1+s.*H.*D))-P.*d;
figure(1)
hold on
for K=1:10;
% System as a 2-D function
f = @(t,X) [X(1)*(r*(1-X(1)*(1/K))-(s*X(1)/1+s*H*X(1))*X(2));
X(2)*(e*(s*X(1))/(1+s*H*X(1))-d)];
%Direction Filed
% Ddot is dD/dt and Pdot is dP/dt derivatives
Ddot = D-(1./K).*D.*D-(s*D)./((1+s.*H.*D)).*P;
% Vector Field
quiver(D,P,Ddot,Pdot, 'LineWidth',1.5)
% Phase Trajectories
X0=0.5*K*rand;Y0=K*rand;
[ts, Xs] = ode45(f,timespan, [X0, Y0]);
% plot of several trajectories
plot(Xs(:,1), Xs(:,2), 'Linewidth', 2)
end
xlabel('Prey, D', 'FontSize',14)
ylabel('Predator, P', 'FontSize',14)
set(gca, 'FontSize', 16)
xlim([-0.8 10])
ylim([-0.8 10])

Sign in to comment.

More Answers (1)

Les Beckham
Les Beckham on 31 Oct 2023
Because you told Matlab to make all of the lines black.
For example, the 'k' in this command means "make the lines black":
plot(Xs(:,1), Xs(:,2),'k', 'Linewidth', 2)
% Mesh Grid in (Diamtoms(D),Zooplankton(P))-plane
[D, P] = meshgrid(-0.8:1:10, -0.8:1:10);
% Parameters
% hold on
s=1;
e=1;
r=1;
H=1;
d=0.75;
for K=1:10;
% System as a 2-D function
f = @(t,X) [X(1)*(r*(1-X(1)*(1/K))-(s*X(1)/1+s*H*X(1))*X(2));
X(2)*(e*(s*X(1))/(1+s*H*X(1))-d)];
%Direction Filed
% Ddot is dD/dt and Pdot is dP/dt derivatives
Ddot = D-(1./K).*D.*D-(s*D)./((1+s.*H.*D)).*P;
Pdot = P.*((s.*D)./(1+s.*H.*D))-P.*d;
% Vector Field
figure(1)
quiver(D,P,Ddot,Pdot) % <<< removed color and linewidth specification
hold on % <<< hold on AFTER first plot command
timespan=[0 100];
% Phase Trajectories
X0=0.5*K*rand;
Y0=K*rand;
[ts, Xs] = ode45(f,timespan, [X0, Y0]);
% plot of several trajectories
plot(Xs(:,1), Xs(:,2)) % <<< removed color and linewidth specification
xlabel('Prey, D', 'FontSize',14)
ylabel('Predator, P', 'FontSize',14)
set(gca, 'FontSize', 16)
xlim([-0.8 10])
ylim([-0.8 10])
end

Categories

Find more on 2-D and 3-D Plots in Help Center and File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!