Solve LMIs control in delay system
3 views (last 30 days)
Show older comments
I need to simulation this paper https://doi.org/10.1016/j.ifacol.2016.10.403
Find maximum to exist matrices P>0, Z>0 and Q symmetric such that
and
where
How to solve this problem? I try as follows, but it has some warning that
%% Clear
clear; clc; close;
%% Constant & Initial Condition
t = 0:0.01:20;
K = [-2 3 0; 1 1 0; -3 1 -3];
alp = [1 0.5 -1];
f = sin(t);
%% Solve LMIs
% Declare Variables
setlmis([])
A1 = diag(sign(alp))*K*diag(alp);
P = lmivar(2,[3 3]);
Z = lmivar(2,[3 3]);
Q = lmivar(1,[3 1]);
tau = 0.1;
% Definitions of the LMI
%LMI#1
lmiterm([-1 1 1 P], 1, 1); % LMI #1: P
lmiterm([-1 1 1 Z], 1, 1); % LMI #1: Z
lmiterm([-1 1 2 -Z], 1, 1); % LMI #1: -Z
lmiterm([-1 2 1 -Z], 1, 1); % LMI #1: -Z
lmiterm([-1 2 2 Q], tau,1); % LMI #1: -tau_dash*Q
lmiterm([-1 2 2 Z], 1, 1); % LMI #1: Z
%LMI#2
lmiterm([2 1 1 Q], 1, 1); % LMI #2: Q
lmiterm([2 1 1 Z], 1/tau, -1); % LMI #2: -Z/tau
lmiterm([2 2 1 P], A1', 1); %LMI #2: A1'*P
lmiterm([2 2 1 Z], 1/tau, 1); %LMI #2: Z/tau
lmiterm([2 3 1 0], 0); %LMI #2: 0
lmiterm([2 1 2 P], 1, A1 ); % LMI #2: P*A1
lmiterm([2 1 2 Z], 1/tau, 1); % LMI #2: Z/tau
lmiterm([2 2 2 Q], 1, -1); %LMI #2: -Q
lmiterm([2 2 2 Z], 1/tau, -1); %LMI #2: -Z/tau
lmiterm([2 3 2 Z], tau, A1); %LMI #2: tau*Z*A1
lmiterm([2 1 3 0], 0); % LMI #2: 0
lmiterm([2 2 3 Z], tau*A1', 1); % LMI #2: tau*A1'*Z
lmiterm([2 3 3 Z], -tau, 1); %LMI #2:
%LMI#3
lmiterm([-3 1 1 P],1,1); % LMI #3: P
%LMI#4
lmiterm([-4 1 1 Z],1,1); % LMI #4: Z
lmis = getlmis;
[tmin,xfeas] = feasp(lmis);
0 Comments
Answers (0)
See Also
Categories
Find more on Linear Matrix Inequalities in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!