Plot the periodic function.

23 views (last 30 days)
NIBISHA
NIBISHA on 1 Jan 2024
Answered: Ayush on 1 Jan 2024
  1 Comment
KSSV
KSSV on 1 Jan 2024
What have you attempted for your home work?

Sign in to comment.

Answers (2)

recent works
recent works on 1 Jan 2024
import matplotlib.pyplot as plt
# Define the periodic function
def f(x):
if x % 4 < 2:
return 1/2
else:
return -1/2
# Generate x-axis values
x = range(0, 16)
# Calculate y-axis values
y = [f(i) for i in x]
# Plot the function
plt.plot(x, y)
# Set plot labels and title
plt.xlabel("x")
plt.ylabel("f(x)")
plt.title("Periodic Function")
# Set axis limits
plt.xlim(0, 16)
plt.ylim(-1/2, 1/2)
# Show the plot
plt.grid(True)
plt.show()
Key points:
  • Period: The function repeats every 4 units along the x-axis.
  • Amplitude: The function oscillates between 1/2 and -1/2.
  • Shape: The function has a rectangular shape within each period.
  • Discontinuities: The function has jumps at x = 2 and x = 4, where it changes value abruptly.
  1 Comment
Walter Roberson
Walter Roberson on 1 Jan 2024
This appears to be python code; the stated requirements are that MATLAB code must be used.

Sign in to comment.


Ayush
Ayush on 1 Jan 2024
I understand that you want to get the Laplace Transform of your equation and verify the results through MATLAB code. Here is the MATLAB code for that:
syms t s
% Define one period of the piecewise function using heaviside functions
f_t_period = 0.5 * (heaviside(t) - heaviside(t - 2)) - 0.5 * (heaviside(t - 2) - heaviside(t - 4));
% Define the periodic extension of the function
f_t = f_t_period - subs(f_t_period, t, t - 4);
% Define the period
T = 4;
% Compute the Laplace transform of one period of the function
F_s = (1 - exp(-s*T))^(-1) * int(f_t_period * exp(-s*t), t, 0, T);
% Plot the original piecewise function over multiple periods
num_periods = 3; % Number of periods to plot
t_vals = linspace(0, num_periods*T, 1000); % Define time values for plotting
f_vals = double(subs(f_t, t, mod(t_vals, T))); % Evaluate f(t) at the time values with modulo for periodicity
figure;
subplot(2, 1, 1);
plot(t_vals, f_vals, 'LineWidth', 2);
title('Original Periodic Function f(t)');
xlabel('Time t');
ylabel('f(t)');
axis([0 num_periods*T -1 1]);
grid on;
% Plot the real part of the Laplace transform over a range of s values
% We avoid s = 0 to prevent division by zero
s_vals = linspace(0.01, 10, 200); % Define s values for plotting, starting just above zero
F_vals = double(subs(F_s, s, s_vals)); % Evaluate F(s) at the s values
subplot(2, 1, 2);
plot(s_vals, real(F_vals), 'LineWidth', 2); % Plot only the real part
title('Laplace Transform F(s)');
xlabel('s');
ylabel('Real part of F(s)');
grid on;
Thanks,
Ayush

Categories

Find more on Mathematics in Help Center and File Exchange

Products


Release

R2023b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!