scientific notation convertion of coefficients of a polynomial

2 views (last 30 days)
syms x
f = - 0.042440155 + 0.29476113*x + 0.47380563*x^2 - 0.17632127*x^3 + 0.038426007*x^4 - 0.005090693*x^5 + ...
0.00073686606*x^6 - 0.00024549191*x^7 + 0.000072758471*x^8 - 0.000017260649*x^9 + 0.0000048409949*x^10 - ...
0.0000014708831*x^11 + 0.00000037777292*x^12 - 0.000000086757727*x^13 + 0.000000020031646*x^14 - ...
4.1039434e-9*x^15 + 5.354131e-10*x^16 + 3.6711725e-12*x^17 - 1.9835736e-11*x^18 + 4.9956502e-12*x^19 - ...
7.3416852e-13*x^20 + 7.2822196e-14*x^21 - 4.9740077e-15*x^22 + 2.2607386e-16*x^23 - ...
6.1866125e-18*x^24 + 7.7315661e-20*x^25;
%% I want Matlab to convert all the coefficients of f(x) like: 7.7315661 e-20 (one digit before decimal and the exponential form with base 10 or e) and give me a modified f(x)
  3 Comments
MINATI PATRA
MINATI PATRA on 27 Jan 2024
Yes, it is required for a particular sense. Actually I got the code from this format 3 years back but forgotten. That comand solved my purpose which vpa couldn't. That's why it is needed.
Walter Roberson
Walter Roberson on 31 Jan 2024
syms x
f = - 0.042440155 + 0.29476113*x + 0.47380563*x^2 - 0.17632127*x^3 + 0.038426007*x^4 - 0.005090693*x^5 + ...
0.00073686606*x^6 - 0.00024549191*x^7 + 0.000072758471*x^8 - 0.000017260649*x^9 + 0.0000048409949*x^10 - ...
0.0000014708831*x^11 + 0.00000037777292*x^12 - 0.000000086757727*x^13 + 0.000000020031646*x^14 - ...
4.1039434e-9*x^15 + 5.354131e-10*x^16 + 3.6711725e-12*x^17 - 1.9835736e-11*x^18 + 4.9956502e-12*x^19 - ...
7.3416852e-13*x^20 + 7.2822196e-14*x^21 - 4.9740077e-15*x^22 + 2.2607386e-16*x^23 - ...
6.1866125e-18*x^24 + 7.7315661e-20*x^25;
vpa(f, 8)
ans = 

Sign in to comment.

Accepted Answer

MINATI PATRA
MINATI PATRA on 27 Jan 2024
FM = regexprep(char(vpa(f)),'([0-9]+\.[0-9]+)','${num2str(str2num($1),''%e'')}')
This is working.
  5 Comments
MINATI PATRA
MINATI PATRA on 31 Jan 2024
@ Dyuman
Yes, I will use that expression as solution of ODE, nothing more with that.

Sign in to comment.

More Answers (2)

VBBV
VBBV on 27 Jan 2024
syms x
f = - 0.042440155 + 0.29476113*x + 0.47380563*x^2 - 0.17632127*x^3 + 0.038426007*x^4 - 0.005090693*x^5 + ...
0.00073686606*x^6 - 0.00024549191*x^7 + 0.000072758471*x^8 - 0.000017260649*x^9 + 0.0000048409949*x^10 - ...
0.0000014708831*x^11 + 0.00000037777292*x^12 - 0.000000086757727*x^13 + 0.000000020031646*x^14 - ...
4.1039434e-9*x^15 + 5.354131e-10*x^16 + 3.6711725e-12*x^17 - 1.9835736e-11*x^18 + 4.9956502e-12*x^19 - ...
7.3416852e-13*x^20 + 7.2822196e-14*x^21 - 4.9740077e-15*x^22 + 2.2607386e-16*x^23 - ...
6.1866125e-18*x^24 + 7.7315661e-20*x^25
f = 
f = vpa(f,2)
f = 
something like this
  1 Comment
Dyuman Joshi
Dyuman Joshi on 27 Jan 2024
Edited: Dyuman Joshi on 27 Jan 2024
@VBBV, nice idea, however, it does not change the notation for all values, please see the coefficients of x^4, x^3, x^2, x^1 and x^0.

Sign in to comment.


Steven Lord
Steven Lord on 30 Jan 2024
syms x
f = - 0.042440155 + 0.29476113*x + 0.47380563*x^2 - 0.17632127*x^3 + 0.038426007*x^4 - 0.005090693*x^5 + ...
0.00073686606*x^6 - 0.00024549191*x^7 + 0.000072758471*x^8 - 0.000017260649*x^9 + 0.0000048409949*x^10 - ...
0.0000014708831*x^11 + 0.00000037777292*x^12 - 0.000000086757727*x^13 + 0.000000020031646*x^14 - ...
4.1039434e-9*x^15 + 5.354131e-10*x^16 + 3.6711725e-12*x^17 - 1.9835736e-11*x^18 + 4.9956502e-12*x^19 - ...
7.3416852e-13*x^20 + 7.2822196e-14*x^21 - 4.9740077e-15*x^22 + 2.2607386e-16*x^23 - ...
6.1866125e-18*x^24 + 7.7315661e-20*x^25
f = 
c = coeffs(f, 'all') % or
c = 
[c, t] = coeffs(f)
c = 
t = 
Now you can do whatever formatting you want with c.
The 'all' option and/or the second input are useful if one of the powers of x is not present in f, as in this example:
f2 = x^3+2*x+3
f2 = 
c1 = coeffs(f2) % Missing the x^2 term and in a different order
c1 = 
c2 = coeffs(f2, 'all') % Including the x^2 term
c2 = 
[c3, t3] = coeffs(f2) % x^2 (and its coefficient) are not present in both c3 and t3
c3 = 
t3 = 

Categories

Find more on Symbolic Math Toolbox in Help Center and File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!