I drew this curve, using the code below. How can I remain only on the line with circles above it?
1 view (last 30 days)
Show older comments
% Define symbolic variables
syms a omega
% Given parameters
omega_n =1;
mu = 0.1;
alpha = 0.2;
chi = 0.4;
beta = 0.1;
kappa = 0.15;
F1 = 0.3;
F3 =0;
sigma = omega - omega_n;
B = -(1/8)*F3/omega_n^2;
H1 = -4*beta^2*F1 - 4*F1*omega_n^2;
H2 = 6*B*alpha*beta^2 + 6*B*alpha*omega_n^2;
H3 = 4*beta^2*mu*omega_n + 4*beta*chi*kappa*omega_n + 4*mu*omega_n^3;
H4 = 3*alpha*beta^2 + 3*alpha*omega_n^2;
H5 = -24*B^2*alpha*beta^2 - 24*B^2*alpha*omega_n^2 + 8*beta^2*sigma*omega_n - 4*chi*kappa*omega_n^2 + 8*sigma*omega_n^3;
G1 = H4^6;
G2 = -3*H2^2*H4^4 - 6*H4^5*H5;
G3 = 3*H2^4*H4^2 + 12*H2^2*H4^3*H5 + 3*H3^2*H4^4 + 15*H4^4*H5^2;
G4 = -H1^2*H4^4 - H2^6 - 6*H2^4*H4*H5 - 6*H2^2*H3^2*H4^2 - 18*H2^2*H4^2*H5^2 - 12*H3^2*H4^3*H5 - 20*H4^3*H5^3;
G5 = -H1^2*H2^2*H4^2 + 4*H1^2*H4^3*H5 + 3*H2^4*H3^2 + 3*H2^4*H5^2 + 12*H2^2*H3^2*H4*H5 + 12*H2^2*H4*H5^3 + 3*H3^4*H4^2 + 18*H3^2*H4^2*H5^2 + 15*H4^2*H5^4;
G6 = -2*H1^3*H2*H4^2 + 2*H1^2*H2^4 + 2*H1^2*H2^2*H4*H5 - 2*H1^2*H3^2*H4^2 - 6*H1^2*H4^2*H5^2 - 3*H2^2*H3^4 - 6*H2^2*H3^2*H5^2 - 3*H2^2*H5^4 - 6*H3^4*H4*H5 - 12*H3^2*H4*H5^3 - 6*H4*H5^5;
G7 = 4*H1^3*H2*H4*H5 - H1^2*H2^2*H3^2 - H1^2*H2^2*H5^2 + 4*H1^2*H3^2*H4*H5 + 4*H1^2*H4*H5^3 + H3^6 + 3*H3^4*H5^2 + 3*H3^2*H5^4 + H5^6;
G8 = -H1^4*H2^2 + 2*H1^3*H2*H3^2 - 2*H1^3*H2*H5^2 - H1^2*H3^4 - 2*H1^2*H3^2*H5^2 - H1^2*H5^4;
% Define the system of equations
EQ = a^14*G1 + a^12*G2 + a^10*G3 + a^8*G4 + a^6*G5 + a^4*G6 + a^2*G7 + G8;
% Solve the system of equations
sol = solve(EQ, a);
% Display the solutions
disp('Solutions for a:');
disp(sol);
% Plot the solutions versus omega
omega_values = linspace(0,1.8,10000); % adjust the range accordingly
figure(2);
hold on;
for i = 1:length(sol)
a_values = subs(sol(i), omega, omega_values);
plot(omega_values, a_values, 'DisplayName', ['Solution ' num2str(i)]);
end
hold off;
xlabel('\omega');
ylabel('a');
title('Solutions versus \omega');
legend('show');
0 Comments
Accepted Answer
Walter Roberson
on 22 Feb 2024
Moved: Rik
on 23 Feb 2024
Refinement of your code:
syms a omega
% Given parameters
omega_n =1;
mu = 0.1;
alpha = 0.2;
chi = 0.4;
beta = 0.1;
kappa = 0.15;
F1 = 0.3;
F3 =0;
sigma = omega - omega_n;
B = -(1/8)*F3/omega_n^2;
H1 = -4*beta^2*F1 - 4*F1*omega_n^2;
H2 = 6*B*alpha*beta^2 + 6*B*alpha*omega_n^2;
H3 = 4*beta^2*mu*omega_n + 4*beta*chi*kappa*omega_n + 4*mu*omega_n^3;
H4 = 3*alpha*beta^2 + 3*alpha*omega_n^2;
H5 = -24*B^2*alpha*beta^2 - 24*B^2*alpha*omega_n^2 + 8*beta^2*sigma*omega_n - 4*chi*kappa*omega_n^2 + 8*sigma*omega_n^3;
G1 = H4^6;
G2 = -3*H2^2*H4^4 - 6*H4^5*H5;
G3 = 3*H2^4*H4^2 + 12*H2^2*H4^3*H5 + 3*H3^2*H4^4 + 15*H4^4*H5^2;
G4 = -H1^2*H4^4 - H2^6 - 6*H2^4*H4*H5 - 6*H2^2*H3^2*H4^2 - 18*H2^2*H4^2*H5^2 - 12*H3^2*H4^3*H5 - 20*H4^3*H5^3;
G5 = -H1^2*H2^2*H4^2 + 4*H1^2*H4^3*H5 + 3*H2^4*H3^2 + 3*H2^4*H5^2 + 12*H2^2*H3^2*H4*H5 + 12*H2^2*H4*H5^3 + 3*H3^4*H4^2 + 18*H3^2*H4^2*H5^2 + 15*H4^2*H5^4;
G6 = -2*H1^3*H2*H4^2 + 2*H1^2*H2^4 + 2*H1^2*H2^2*H4*H5 - 2*H1^2*H3^2*H4^2 - 6*H1^2*H4^2*H5^2 - 3*H2^2*H3^4 - 6*H2^2*H3^2*H5^2 - 3*H2^2*H5^4 - 6*H3^4*H4*H5 - 12*H3^2*H4*H5^3 - 6*H4*H5^5;
G7 = 4*H1^3*H2*H4*H5 - H1^2*H2^2*H3^2 - H1^2*H2^2*H5^2 + 4*H1^2*H3^2*H4*H5 + 4*H1^2*H4*H5^3 + H3^6 + 3*H3^4*H5^2 + 3*H3^2*H5^4 + H5^6;
G8 = -H1^4*H2^2 + 2*H1^3*H2*H3^2 - 2*H1^3*H2*H5^2 - H1^2*H3^4 - 2*H1^2*H3^2*H5^2 - H1^2*H5^4;
% Define the system of equations
EQ = a^14*G1 + a^12*G2 + a^10*G3 + a^8*G4 + a^6*G5 + a^4*G6 + a^2*G7 + G8;
% Solve the system of equations
sol = solve(EQ, a);
% Display the solutions
disp('Solutions for a:');
disp(sol);
% Plot the solutions versus omega
omega_values = linspace(0,1.8,300); % adjust the range accordingly
figure(2);
hold on;
for i = 1:length(sol)
a_values = double(subs(sol(i), omega, omega_values));
a_values(imag(a_values)~=0) = nan;
plot(omega_values, a_values, 'DisplayName', ['Solution ' num2str(i)]);
end
hold off;
xlabel('\omega');
ylabel('a');
title('Solutions versus \omega');
legend('show');
More Answers (0)
See Also
Categories
Find more on Linear Algebra in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!