Operands to the logical AND (&&) and OR (||) operators must be convertible to logical scalar values. Use the ANY or ALL functions to reduce operands to logical scalar values.
4 views (last 30 days)
Show older comments
Hi, I get the following error with the given code,
"Operands to the logical AND (&&) and OR (||) operators must be convertible to logical scalar values. Use the ANY or ALL functions to reduce operands to logical scalar values."
This performs a minimization using the active set method. But seemingly, it stops over this operator problem.
Any ideas welcome!
% Define symbolic variables
syms x1 x2 x3 lambda1 lambda3
% Objective function
f = x1^2 + x2^2 + x3^2 - x1 + 2*x2 - 4*x3;
% Constraints
g1 = -x1 + x2 + 1; % -x1 + x2 >= -1 is equivalent to g1 <= 0
g2 = x1 + x2 + x3 + 3; % x1 + x2 + x3 >= -3 is equivalent to g2 <= 0
g3 = x3; % x3 >= 0 is equivalent to g3 <= 0
% Initial point
x0 = [0; 0; 0];
% Iterative process
x = x0;
activeSet = []; % Initially empty active set
maxIter = 10; % Maximum number of iterations
tol = 1e-6; % Tolerance for convergence
for iter = 1:maxIter
% Compute gradients of the objective function and constraints
grad_f = gradient(f, [x1, x2, x3]);
grad_g1 = gradient(g1, [x1, x2, x3]);
grad_g2 = gradient(g2, [x1, x2, x3]);
grad_g3 = gradient(g3, [x1, x2, x3]);
% Evaluate gradients at the current point
grad_f_val = double(subs(grad_f, {x1, x2, x3}, x'));
grad_g1_val = double(subs(grad_g1, {x1, x2, x3}, x'));
grad_g2_val = double(subs(grad_g2, {x1, x2, x3}, x'));
grad_g3_val = double(subs(grad_g3, {x1, x2, x3}, x'));
% Check KKT conditions to determine active set
if abs(grad_g1_val) < tol && subs(g1, {x1, x2, x3}, x') <= 0
activeSet = [activeSet, 1]; % Constraint 1 is active
end
if abs(grad_g2_val) < tol && subs(g2, {x1, x2, x3}, x') <= 0
activeSet = [activeSet, 2]; % Constraint 2 is active
end
if abs(grad_g3_val) < tol && subs(g3, {x1, x2, x3}, x') <= 0
activeSet = [activeSet, 3]; % Constraint 3 is active
end
% Solve the subproblem using the active set
A_eq = [];
b_eq = [];
A_ineq = [];
b_ineq = [];
lb = [];
ub = [];
options = optimoptions('quadprog', 'Display', 'off');
if any(activeSet == 1)
A_ineq = [A_ineq; -1, 1, 0];
b_ineq = [b_ineq; -1];
end
if any(activeSet == 2)
A_ineq = [A_ineq; 1, 1, 1];
b_ineq = [b_ineq; -3];
end
if any(activeSet == 3)
A_ineq = [A_ineq; 0, 0, 1];
b_ineq = [b_ineq; 0];
end
[x_new, ~, exitflag] = quadprog(eye(3), -grad_f_val', A_ineq, b_ineq, A_eq, b_eq, lb, ub, [], options);
% Check convergence
if norm(x_new - x) < tol
break;
end
% Update x and active set
x = x_new;
activeSet = unique(activeSet);
end
% Display results
disp(['Optimal point: x = [', num2str(x'), ']']);
disp(['Objective function value: ', num2str(double(subs(f, {x1, x2, x3}, x')))]);
0 Comments
Accepted Answer
Torsten
on 4 Jul 2024
Edited: Torsten
on 4 Jul 2024
if all(abs(grad_g1_val) < tol) && subs(g1, {x1, x2, x3}, x') <= 0
activeSet = [activeSet, 1]; % Constraint 1 is active
end
if all(abs(grad_g2_val) < tol) && subs(g2, {x1, x2, x3}, x') <= 0
activeSet = [activeSet, 2]; % Constraint 2 is active
end
if all(abs(grad_g3_val) < tol) && subs(g3, {x1, x2, x3}, x') <= 0
activeSet = [activeSet, 3]; % Constraint 3 is active
end
instead of
if abs(grad_g1_val) < tol && subs(g1, {x1, x2, x3}, x') <= 0
activeSet = [activeSet, 1]; % Constraint 1 is active
end
if abs(grad_g2_val) < tol && subs(g2, {x1, x2, x3}, x') <= 0
activeSet = [activeSet, 2]; % Constraint 2 is active
end
if abs(grad_g3_val) < tol && subs(g3, {x1, x2, x3}, x') <= 0
activeSet = [activeSet, 3]; % Constraint 3 is active
end
More Answers (0)
See Also
Categories
Find more on Special Functions in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!