function must return a column vector

1 view (last 30 days)
Musa Abdullahi
Musa Abdullahi on 28 Jul 2024
Edited: Walter Roberson on 28 Jul 2024
Hi, i am trying to plot some graphs for my my theses but i keep on getting error message..
find attached the code.. please help
function Juve_Model
clc;
%close all
global NO
%initial condition
Initial1 = [100,30,10,30];
hold on
for i=1:2:10
Initial=Initial1*i;
[t,u]=ode45(@hcv4,0:0.5:90, Initial);
subplot(2,2,1)
grid on
hold on
%axis([0 1400 0 1]);
plot(t,u(:,1),'linewidth',3);
xlabel('Time (days)')
ylabel('L')
%*********************************************
subplot(2,2,2)
grid on
hold on
plot(t,u(:,2),'linewidth',3);
xlabel('Time (days)')
ylabel('F_1')
%********************************************
subplot(2,2,3)
grid on
hold on
plot(t,u(:,3),'linewidth',3);
xlabel('Time (days)')
ylabel('F_2')
%*******************************************
subplot(2,2,4)
grid on
hold on
plot(t,u(:,4),'linewidth',3);
xlabel('Time (days)')
ylabel('M')
end
NO
end
function dy=hcv4(t,y)
%y=(L, F_1,F_2,M)=(y(1),y(2),y(3),y(4))
global NO
alpha=15; beta=0.1; q=0.3; gamma =0.7;
%beta=0.15; q=0.35; gamma=0.75;
K=1000; mu_L=0.35; d=0.45; mu_F1=0.15; mu_M=0.15; mu_F2=0.5;
% Basic Offspring (Reproduction) Number
NO=alpha*gamma*beta*q/(mu_F2*(mu_F1+gamma)*(beta+mu_L+d));
%Ordinary differential equation
dy(1)=alpha*(1-y(1)/K)*y(3)-(beta+mu_L+d)*y(1);
dy(2)=beta*q*y(1)-(mu_F1+gamma)*y(2);
dy(3)=gamma*y(2)-mu_F2*y(3);
dy(4)=beta*(1-q)*y(1)-mu_M*y(4);
end

Answers (1)

Torsten
Torsten on 28 Jul 2024
Edited: Torsten on 28 Jul 2024
Allocate dy as a column vector before assigning values to it:
%Ordinary differential equation
dy = zeros(4,1);
dy(1)=alpha*(1-y(1)/K)*y(3)-(beta+mu_L+d)*y(1);
dy(2)=beta*q*y(1)-(mu_F1+gamma)*y(2);
dy(3)=gamma*y(2)-mu_F2*y(3);
dy(4)=beta*(1-q)*y(1)-mu_M*y(4);
And why do you need "NO" as a global variable ?
  6 Comments
Torsten
Torsten on 28 Jul 2024
Edited: Torsten on 28 Jul 2024
Juve_Model()
function Juve_Model
clc;
%close all
%initial condition
Initial1 = [100,30,10,30];
index = 0;
for i=1:2:10
Initial=Initial1*i;
[t,u]=ode45(@hcv4,0:0.5:90, Initial);
index = index + 1;
T{index} = t;
U{index} = u;
end
figure(1)
hold on
for i = 1:5
plot(T{i},U{i}(:,1),'linewidth',3)
end
hold off
grid on
xlabel('Time (days)')
ylabel('L')
figure(2)
hold on
for i = 1:5
plot(T{i},U{i}(:,2),'linewidth',3)
end
hold off
grid on
xlabel('Time (days)')
ylabel('F_1')
figure(3)
hold on
for i = 1:5
plot(T{i},U{i}(:,3),'linewidth',3)
end
hold off
grid on
xlabel('Time (days)')
ylabel('F_2')
figure(4)
hold on
for i = 1:5
plot(T{i},U{i}(:,4),'linewidth',3)
end
hold off
grid on
xlabel('Time (days)')
ylabel('M')
end
function dy=hcv4(t,y)
%y=(L, F_1,F_2,M)=(y(1),y(2),y(3),y(4))
alpha=15; beta=0.1; q=0.3; gamma =0.7;
%beta=0.15; q=0.35; gamma=0.75;
K=1000; mu_L=0.35; d=0.45; mu_F1=0.15; mu_M=0.15; mu_F2=0.5;
% Basic Offspring (Reproduction) Number
NO=alpha*gamma*beta*q/(mu_F2*(mu_F1+gamma)*(beta+mu_L+d));
%Ordinary differential equation
dy = zeros(4,1);
dy(1)=alpha*(1-y(1)/K)*y(3)-(beta+mu_L+d)*y(1);
dy(2)=beta*q*y(1)-(mu_F1+gamma)*y(2);
dy(3)=gamma*y(2)-mu_F2*y(3);
dy(4)=beta*(1-q)*y(1)-mu_M*y(4);
end

Sign in to comment.

Categories

Find more on Mathematics in Help Center and File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!