Implementation of the analytical expression for the magnetic field of a circular current loop and interpreta​tion/repre​sentation of the results

2 views (last 30 days)
I want to analytically approximate the magnetic field of a few coil arrangements. For this purpose i found a very helpful paper: 20140002333.pdf (nasa.gov). On page 8 of the PDF document are the analytic expressions for the field components of the magnetic field in spherical coordinates:
This is my implementation:
function [B_r,B_theta] = magneticField_circularCoil(I,N,a,r,theta)
%MAGNETICFIELDCOMPONENTS Calculates the magnetic field components B_r and
%B_theta (spherical coordinates)
% B_r: B component in r direction
% B_theta: B component in theta direction
% I: current through conductor
% N: number of coil windings
% a: radius of the coil
% r: distance from the origin (spherical coordinates)
% theta: angle to z-axis (spherical coordinates) IN DEGREES
%
% Source for used analytic formula:
% https://ntrs.nasa.gov/api/citations/20140002333/downloads/20140002333.pdf
mu0 = 4.*pi.*1e-7;
alpha2 = a.^2 + r.^2 - 2.*a.*r.*sind(theta);
beta2 = a.^2 + r.^2 + 2.*a.*r.*sind(theta);
k2 = 1 - alpha2./beta2;
C = mu0 * I./pi;
[K_k2,E_k2] = ellipke(k2);
B_r = N.*(C.*a.^2.*cosd(theta))./(alpha2.*sqrt(beta2)) .* E_k2;
B_theta = N.*C./(2.*alpha2.*sqrt(beta2).*sind(theta)) .* ((r.^2+a.^2.*cosd(2.*theta)).*E_k2 - alpha2.*K_k2);
B_phi = 0;
end
To test the function, I wrote the following code:
%% Analytical calculation of the magnetic field of the Helmholtz coil arrangement %%
% Approximation: The coil diameter is neglected. All windings "in one
% place"
% approximation: The magnetic table top is assumed to act as a perfect
% magnetic "mirror" is assumed.
%
format compact;
% Radius of the Coil in meters:
a = 0.2;
% Current through Coil in amperes:
I = 5.0;
% Number of Coil windings:
N = 154; % source: datasheet Helmholtz coils
r_test = sqrt(0.2.^2+0.2.^2);
[B_r1,B_theta1] = magneticField_circularCoil(I,N,a,r_test,45.0)
[B_r2,B_theta2] = magneticField_circularCoil(I,N,a,r_test,135.0)
This leads to the following expected results (the magnitude of the resulting field is the same but it's in different directions):
>> Magnetfeld_Helmholtzspule_analytisch
B_r1 =
5.2273e-04
B_theta1 =
-4.2355e-06
B_r2 =
-5.2273e-04
B_theta2 =
-4.2355e-06
Is my implementation of the field components correct?
And how could I represent the superimposed field of two (or more) coils? I would appreciate any ideas!
  2 Comments
Alan Stevens
Alan Stevens on 2 Aug 2024
You define beta2 as a.^2 + r.^2 + 2.*a.*r, but the printed text has the 2ar term multiplied by sin(theta) in a similar manner to that for alpha2. (I've no idea if that will solve your problem though!).

Sign in to comment.

Answers (1)

Alan Stevens
Alan Stevens on 2 Aug 2024
When I run it I get different signs as well as slightly different magnitudes:
%% Analytical calculation of the magnetic field of the Helmholtz coil arrangement %%
% Approximation: The coil diameter is neglected. All windings "in one
% place"
% approximation: The magnetic table top is assumed to act as a perfect
% magnetic "mirror" is assumed.
%
format compact;
% Radius of the Coil in meters:
a = 0.2;
% Current through Coil in amperes:
I = 5.0;
% Number of Coil windings:
N = 154; % source: datasheet Helmholtz coils
r_test = sqrt(0.2.^2+0.2.^2);
[B_r1,B_theta1] = magneticField_circularCoil(I,N,a,r_test,45.0)
B_r1 = 5.7391e-04
B_theta1 = 4.8589e-05
[B_r2,B_theta2] = magneticField_circularCoil(I,N,a,r_test,135.0)
B_r2 = -5.7391e-04
B_theta2 = 4.8589e-05
function [B_r,B_theta] = magneticField_circularCoil(I,N,a,r,theta)
%MAGNETICFIELDCOMPONENTS Calculates the magnetic field components B_r and
%B_theta (spherical coordinates)
% B_r: B component in r direction
% B_theta: B component in theta direction
% I: current through conductor
% N: number of coil windings
% a: radius of the coil
% r: distance from the origin (spherical coordinates)
% theta: angle to z-axis (spherical coordinates) IN DEGREES
%
% Source for used analytic formula:
% https://ntrs.nasa.gov/api/citations/20140002333/downloads/20140002333.pdf
mu0 = 4.*pi.*1e-7;
alpha2 = a.^2 + r.^2 - 2.*a.*r.*sind(theta);
beta2 = a.^2 + r.^2 + 2.*a.*r.*sind(theta);
k2 = 1 - alpha2./beta2;
C = mu0 * I./pi;
[K_k2,E_k2] = ellipke(k2);
B_r = N.*(C.*a.^2.*cosd(theta))./(alpha2.*sqrt(beta2)) .* E_k2;
B_theta = N.*C./(2.*alpha2.*sqrt(beta2).*sind(theta)) .* ((r.^2+a.^2.*cosd(2.*theta)).*E_k2 - alpha2.*K_k2);
B_phi = 0;
end

Categories

Find more on Programming in Help Center and File Exchange

Products


Release

R2024a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!