3D integration over a region bounded by some planes.
3 views (last 30 days)
Show older comments
I want to perform 3D integrations of some functions over a region defined by the following 14 planes. As an example, consider the function . The region is bounded by:
- 2 planes parallel to yz-plane at and .
- 2 planes parallel to xz-plane at and .
- 2 planes parallel to xy-plane at and .
- 8 planes which are penpendicular to the vectors - given in below code at mid point of these vector ().
Code to visulize the last 8 planes. First 6 planes are quite eays to imagine.
clear; clc;
figure; hold on;
axis([-1 1 -1 1 -1 1])
% function to calculate the 8 vectors:
f = @(vec) vec(1)*[-1 1 1] + vec(2)*[1 -1 1] + vec(3)*[1 1 -1];
% 8 vectors:
v1 = f([1, 1, 1]);
v2 = f([-1, -1, -1]);
v3 = f([0, 1, 0]);
v4 = f([0, -1, 0]);
v5 = f([0, 0, 1]);
v6 = f([0, 0, -1]);
v7 = f([1, 0, 0]);
v8 = f([-1, 0, 0]);
% draw planes perpendicular to v vectors at v/2 point:
draw_plane(v1)
draw_plane(v2)
draw_plane(v3)
draw_plane(v4)
draw_plane(v5)
draw_plane(v6)
draw_plane(v7)
draw_plane(v8)
xlabel('x');
ylabel('y');
zlabel('z');
box on;
set(gca,'fontname','times','fontsize',16)
view([-21 19])
hold off;
function [] = draw_plane(v)
% I took this algorithem from ChatGPT to draw a plane perpendicular to v
plane_size = 3;
midpoint = v./2;
normal_vector = v / norm(v);
perpendicular_vectors = null(normal_vector)';
[t1, t2] = meshgrid(linspace(-plane_size, plane_size, 100));
plane_points = midpoint + t1(:) * perpendicular_vectors(1,:) + t2(:) * perpendicular_vectors(2,:);
X = reshape(plane_points(:,1), size(t1));
Y = reshape(plane_points(:,2), size(t1));
Z = reshape(plane_points(:,3), size(t1));
surf(X, Y, Z, 'FaceAlpha', 0.5, 'EdgeColor', 'none');
plot3(midpoint(1), midpoint(2), midpoint(3), 'go', 'MarkerSize', 10, 'MarkerFaceColor', 'g');
text(midpoint(1), midpoint(2), midpoint(3), ['(',num2str(v(1)),',',num2str(v(2)),',',num2str(v(3)),')']);
end
4 Comments
Torsten
on 8 Aug 2024
Can you provide the region you want to integrate over as a system of linear inequalities ?
Or do you have another method to decide whether a point in [-1,1]x[-1,1]x[-1,1] lies in the region you want to integrate over ?
E.g. [-1,1]x[-1,1]x[-1,1] could be given as
x>=-1
y>=-1
z>=-1
x<=1
y<=1
z<=1
Accepted Answer
Torsten
on 8 Aug 2024
Edited: Torsten
on 8 Aug 2024
f = @(x,y,z)x.^2+y+2*z;
N = [100,1000,10000,100000,1000000,10000000,100000000];
Fi = zeros(numel(N),1);
Fo = Fi;
for i = 1:numel(N)
n = N(i);
x = -1+2*rand(n,1);
y = -1+2*rand(n,1);
z = -1+2*rand(n,1);
idx = x+y+z<=1.5 & x+y+z>=-1.5 & x-y+z<=1.5 & x-y+z>=-1.5 & ...
x+y-z<=1.5 & x+y-z>=-1.5 & -x+y+z<=1.5 & -x+y+z>=-1.5;
Fi(i) = 8*sum(f(x(idx),y(idx),z(idx)))/n; % 8 is the volume of [-1,1]x[-1,1]x[-1,1]
idx = ~idx;
Fo(i) = 8*sum(f(x(idx),y(idx),z(idx)))/n; % 8 is the volume of [-1,1]x[-1,1]x[-1,1]
end
Fi+Fo
plot(1:numel(N),[Fi,Fo,Fi+Fo])
grid on
integral3(f,-1,1,-1,1,-1,1)
f = @(x,y,z)(x.^2+y+2*z).*...
(x+y+z<=1.5).*(x+y+z>=-1.5).*(x-y+z<=1.5).*(x-y+z>=-1.5).*...
(x+y-z<=1.5).*(x+y-z>=-1.5).*(-x+y+z<=1.5).*(-x+y+z>=-1.5);
integral3(f,-1,1,-1,1,-1,1)
For the details, take a look at
More Answers (0)
See Also
Categories
Find more on Logical in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!