Eigenvectors are not orthogonal for some skew-symmetric matrices, why?
30 views (last 30 days)
Show older comments
Rahul Singh
on 1 May 2015
Answered: Christine Tobler
on 20 Sep 2018
0 -0.5000 0 0 0 0.5000
0.5000 0 -0.5000 0 0 0
0 0.5000 0 -0.5000 0 0
A = 0 0 0.5000 0 -0.5000 0
0 0 0 0.5000 0 -0.5000
-0.5000 0 0 0 0.5000 0
The above matrix is skew-symmetric. When I use [U E] = eig(A), to find the eigenvectors of the matrix. These eigenvectors must be orthogonal, i.e., U*U' matix must be Identity matrix. However, I am getting U*U' as
0.9855 -0.0000 0.0410 -0.0000 -0.0265 0.0000
-0.0000 0.9590 0.0000 0.0265 -0.0000 0.0145
0.0410 0.0000 0.9735 -0.0000 -0.0145 0.0000
-0.0000 0.0265 -0.0000 1.0145 0.0000 -0.0410
-0.0265 -0.0000 -0.0145 0.0000 1.0410 -0.0000
0.0000 0.0145 0.0000 -0.0410 -0.0000 1.0265
Here we can observe a substantial error. This happens for some other skew-symmetric matrices also. Why this large error is being observed and how do I get correct eigen-decomposition for all skew-symmetric matrices?
0 Comments
Accepted Answer
Roger Stafford
on 1 May 2015
Edited: Walter Roberson
on 20 Sep 2018
Your matrix A is "defective" , meaning that its eigenvalues are not all distinct. In fact, it has only three distinct eigenvalues. Consequently the space of eigenvectors does not fully span six-dimensional vector space. See the Wikipedia article:
What you are seeing is not an error on Matlab's part. It is a mathematical property of such matrices. You cannot achieve what you call "correct eigen-decomposition" for such matrices.
8 Comments
Lorenzo
on 20 Sep 2018
Edited: Lorenzo
on 20 Sep 2018
That matrix is not defective (1i times the matrix is hermitian and so it has a complete set of eigenvectors), it has however degenerate eigenvalues and this is the reason why U fails to be unitary. You should use schur in this case, which always return a unitary matrix
More Answers (2)
Rahul Singh
on 2 May 2015
4 Comments
Roger Stafford
on 3 May 2015
Yes, all the eigenvectors come out orthogonal after that adjustment I described. The fact that U'*U gives the identity matrix implies that. You should be able to check that for yourself.
Christine Tobler
on 20 Sep 2018
Since, as Lorenzo points out in a comment above, 1i*A is hermitian, you could apply eig to that matrix:
>> [U, D] = eig(1i*A);
>> D = D/1i;
>> norm(U'*U - eye(6))
ans =
1.4373e-15
>> norm(A*U - U*D)
ans =
7.8098e-16
0 Comments
See Also
Categories
Find more on Linear Algebra in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!