- Verify that ( M_{12} ) and ( M_{21} ) are not zero matrices. If they are, the Schur complement will yield an empty matrix.
- Ensure that the boundary conditions applied do not lead to a trivial solution, which could result in zero entries in the mass matrix.
- If the Schur complement method does not yield the desired results, consider using modal analysis directly on the full system or applying a different reduction technique, such as Guyan reduction.
Doubt with reduction of mass and stiffness matrices in a system of 2 pdes
4 views (last 30 days)
Show older comments
Jorge Garcia Garcia
on 25 Sep 2024
Commented: Jorge Garcia Garcia
on 4 Oct 2024
hello, I have this code:
clear all;
clc;
%---------Accelerators sensitivities---------------------------------------
sens0 = 1005; %Channel 0
sens1 = 962.54; %Channel 1
sens2 = 1005.11; %Channel 2
sens3 = 992.35; %Channel 3
fs=2048;
model=createpde(2);
%-----------Define dimensions of the plate-------------------------------
len = 1.22; % length in x direction
width =1.22; % Width in y direction
edges=[]; % Matrix to store the edges that will receive the boundary conditions
% Coordinates of the boundaries in x and y--------------------------------
coords_x = [0 len]';
coords_y = [0 width]';
sq=0.5; %Width of the inner square
% Create the geometry description matrix
gdm = [];
for k = 1 %:numel(coords_x)-1
for j = 1 %:numel(coords_y)-1
% Check if the coordinates are completely inside the external plate
%if coords_x(k) >= 0 && coords_x(k) = len && coords_y(j) >= 0 && coords_y(j) == width
% Add the vertical dimension
gdm = [gdm; 2, 12, coords_x(k), coords_x(k)+sq, coords_x(k+1)-sq, coords_x(k+1),coords_x(k+1),coords_x(k+1),coords_x(k+1), coords_x(k+1)-sq,coords_x(k)+sq, coords_x(k),coords_x(k),coords_x(k),coords_y(j), coords_y(j),coords_y(j),coords_y(j), coords_y(j)+sq, coords_y(j+1)-sq, coords_y(j+1),coords_y(j+1),coords_y(j+1),coords_y(j+1),coords_y(j+1)-sq,coords_y(j)+sq];
%end
end
end
%--------------------------------------------------------------------------
gdm=gdm'; % Format required by decsg function
%---------------Create the geometry--------------------------------------
[dl,bt] = decsg(gdm);
% Construct the geometry with the matrix dl so we keep the information of
% the edges
geometryFromEdges(model,dl);
% Generate the mesh and plot the geometry---------------------------------
msh = generateMesh(model, 'Hmax', 0.15); % Use 'Hmax' to control mesh density
figure %Visualise the model
pdemesh(model)
%---------Create the different regions of the model-----------------------
% Obtain nodes and elements of the mesh
[p,e,t] = meshToPet(model.Mesh);
%-----CREATE MODEL WITH THE GEOMETRIC DESCRIPTION IN DL--------------------------------------
% Definition of the constants
E = 3E9;
h_thick = 0.05;
nu = 0.3;
mass = 45; %kg/m2
D = E*h_thick^3/(12*(1-nu)^2);
% Now we create the PDE systems as symbolic equations_____________________
syms pres
syms u1(x,y,t) u2(x,y,t)
pdeeq = [-laplacian(u1,[x y])+u2==0; D*laplacian(u2,[x y])+ mass*diff(u1,t,t)==pres];
symcoeffs = pdeCoefficients(pdeeq,[u1,u2],'Symbolic',true);
c2=symcoeffs.c;
m2=symcoeffs.m;
%------Display the symbolic coefficients-----------------------------------
structfun(@disp,symcoeffs);
% Substitute a pression value in pres using the sub function. Since output
% of subs are symbolic objects, use pdecoefficienttodoubleto convert these
% coefficients to the double data type so they are valid for the pde toolbox
symcoeffs=subs(symcoeffs,pres,0);
symcoeffs=subs(symcoeffs);
coeffs=pdeCoefficientsToDouble(symcoeffs);
%------pass these coefficients to the pde model----------------------------
f = [0 0]'; %force the Force terms in both equations to be 0
specifyCoefficients(model,'m',coeffs.m,'d',coeffs.d,'c',...
coeffs.c,'a',coeffs.a,'f',f);
% INITIAL CONDITIONS ------------------------------------------------------
setInitialConditions(model,[0;0],[0;0]);
ac=DATA;
% -------Create vector time, not starting in 0
num_samples = size(DATA, 1);
dt = 1 / fs; % interval between measurements
t = (1:num_samples) * dt; % vector of times
% TRANSFORM ACCELERATIONS INTO DISPLACEMENTS_______________________________
acvedi=AccVelDis(sens0,sens1,sens2,ac,fs,t,sens3);
dis=acvedi{3};
t=[0,t]; % I start the time at 0
% Boundary conditions in the faces using the displacement vectors
in=0; %counter variable
Edges=[10 4 6 12]; %Vector with faces numbers
% rest of the edges
allEdges = 1:model.Geometry.NumEdges;
neumannEdges = [1 2 3 5 7 8 9 11];
for i = 1:numel(Edges)
in=in+1;
edge = Edges(i);
dis1=dis(:,in);
applyBoundaryCondition(model, "neumann", "Edge", edge, ...
"g", @(location,state) [mybc1(location,state,dis1,t); 0], ...
"q", [0 0; 1E6 0]);
end
tim=[2:99];
res=solvepde(model, tim);
% Access the solution at the nodal locations
sol_ver_spring06=res.NodalSolution;
when I use FEM = assembleFEMatrices(model,'KMFA') I obtain a k matrix that is nodes*2 x nodes*2 and likewise with the M matrix. I guess that they correspond to my variables U1 and U2 but I guess I cannot use those matrices to calculate the natural frequencies of the system? I have read about using the Schur complement to eliminate u2 from the block matrix system and to rewrite the system in a way that only involves u1. When I use spy (FEM.K) I have values in the 1st and 4th cuadrant of the matrix, whereas if I use spy(FEM.M) the only one with values is the 3rd cuadrant (it makes sense as it just affects the second variable u2):
M11 = FEM.M(1:nodes, 1:nodes);
M12 = FEM.M(1:nodes, nodes+1:end);
M21 = FEM.M(nodes+1:end, 1:nodes);
M22 = FEM.M(nodes+1:end, nodes+1:end);
K11 = FEM.K(1:nodes, 1:nodes);
K12 = FEM.K(1:nodes, nodes+1:end);
K21 =FEM.K(nodes+1:end, 1:nodes);
K22 = FEM.K(nodes+1:end, nodes+1:end);
% Schur complement to reduce the system
M_r = M11 - M12 * (M22 \ M21);
K_r = K11 - K12 * (K22 \ K21);
K_r seems to be ok as now the dimensions are nodesxnodes and M_r has the right dimensions but as just the 3rd cuadrant has values, M_r is empty.
Can I follow any other approach?
Thanks very much for your help
0 Comments
Accepted Answer
UDAYA PEDDIRAJU
on 4 Oct 2024
Hi Jorge,
To address the issue with the mass matrix ( M_r ) being empty, you might want to check the following:
I am attaching my code here as an example:
% Check if M12 and M21 are non-zero
if all(M12(:) == 0) || all(M21(:) == 0)
error('M12 or M21 is a zero matrix, check your boundary conditions.');
end
% Calculate the Schur complement
M_r = M11 - M12 * (M22 \ M21);
K_r = K11 - K12 * (K22 \ K21);
% Display the results
disp('Reduced Mass Matrix M_r:');
disp(M_r);
disp('Reduced Stiffness Matrix K_r:');
disp(K_r);
More Answers (1)
See Also
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!