bvp4c singular jacobian error

8 views (last 30 days)
Hello,
I am trying to solve a boundary value problem. But I have faced with " Singular Jacobian Error". Does anybody know how I can solve it?
It doesn't work for Nmf>4 !!!
clc; close all; clear all;
format long e
solinit = bvpinit(x,@xinitfun);
sol= bvp4c(@odefun,@bcfun,solinit);
x= linspace(-1,1,100)
function xinit= xinitfun(x)
xinit=rand((2*Nmf+1)*6 * 2,1);
function dydx = odefun(x , y)
global Nmf Re alpha Ra Pr NR
dydx = zeros((2 * Nmf + 1) * 2 * NR,1);
dydx1= zeros((2 * Nmf + 1) * NR,1);
for ii = 1 : 2 * Nmf + 1
RI = (ii - 1) * NR;
II = (ii - 1) * NR + (2 * Nmf +1) * NR;
n = ii - Nmf - 1;
na = n * alpha;
teta_f2 = 0;
NLT1 = 0;
NLT2 = 0;
for jj = 1 : 2 * Nmf + 1
m = jj - Nmf - 1;
ma = m * alpha;
nma =(n - m) * alpha;
teta_f = 0;
diff_teta_f = 0;
if abs(n - m) <= Nmf
if abs(n - m) == 1
teta_f = (-1 / 8 * Pr) * sinh(nma .* x) ./ sinh(nma) + (1 / 8 * Pr) * cosh(nma .* x) ./ cosh(nma);
diff_teta_f = (nma * sinh(nma .* x)) ./ (8 * Pr * cosh(nma)) - (nma * cosh(nma .* x)) ./ (8 * Pr * sinh(nma));
elseif (n - m) == 0
teta_f = 0.5 .* (1 - x) / Pr;
diff_teta_f = 0.5 / Pr;
end
NLT1 = NLT1 + (y(2 + RI) + y(2 + II) * i) * ma .* ((y(3 + RI) + y(3 + II) * i) - ma ^ 2 .* (y(1 + RI) + y(1 + II) * i))...
- nma .* (y(1 + RI) + y(1 + II) * i) .* ((y(4 + RI) + y(4 + II) * i) - ma ^ 2 .* (y(2 + RI) + y(2 + II) * i));
NLT2 = NLT2 + nma .* (y(2 + RI) + y(2 + II) * i) .* (teta_f + Pr .* (y(5 + RI) + y(5 + II) * i)) - ma .*...
(y(1 + RI) + y(1 + II) * i) .* (diff_teta_f + Pr .*( y(6 + RI) + y(6 + II) * i));
end
end
if abs(n) == 1
teta_f2 = (-1 / 8 * Pr) * sinh(na .* x) ./ sinh(na) + (1 / 8 * Pr) * cosh(na .* x) ./ cosh(na);
elseif n == 0
teta_f2 = 0.5 .* (1 - x)/ Pr;
end
dydx1((ii - 1) * NR + 1 : ii * NR,1) = [y(2 + RI) + y(2 + II) * i
y(3 + RI) + y(3 + II) * i
y(4 + RI) + y(4 + II) * i
2 * (na) ^ 2 .* (y(3 + RI) + y(3 + II) * i) - na ^ 4 .* (y(1 + RI) + y(1 + II) * i) + (na * Re .* (1 - x .^ 2) .* ...
(y(3 + RI) + y(3 + II) * i - na ^ 2 .* (y(1 + RI) + y(1 + II) * i)) - na * Re * (-2) .* (y(1 + RI) + y(1 + II) * i) + na * Ra .* (y(5 + RI) + y(5 + II) * i) + (Ra/Pr) * na .* teta_f2 + NLT1) * i
y(6 + RI) + y(6 + II) * i
na ^2 .* (y(5 + RI) + y(5 + II) * i) + (na * Re * (1 - x .^ 2) .* (Pr .* (y(5 + RI) + y(5 + II) * i) + teta_f2 ) + NLT2) * i];
end
dydx=[real(dydx1);imag(dydx1)];
function res=bcfun(ya,yb)
global Nmf NR
res=[ya(1 : NR : (2 * Nmf + 1) * 2 * NR)
ya(2 : NR : (2 * Nmf + 1) * 2 * NR)
ya(5 : NR : (2 * Nmf + 1) * 2 * NR)
yb(1 : NR : (2 * Nmf + 1) * 2 * NR)
yb(2 : NR : (2 * Nmf + 1) * 2 * NR)
yb(5 : NR : (2 * Nmf + 1) * 2 * NR)];

Accepted Answer

Walter Roberson
Walter Roberson on 17 Nov 2011
  1 Comment
Amir K Neghab
Amir K Neghab on 18 Nov 2011
Thanks Walter. I have found my silly errors.
Instead of y(6) I had to write y(6+RI).
But i would like to get to know what "SingularTerms option"is.
Thanks so much for your prompt answer
Amir

Sign in to comment.

More Answers (1)

Walter Roberson
Walter Roberson on 30 Nov 2011
In your revised code, the "x=" line must go before the "solinit=" line.
When you say that "It doesn't work for Nmf>4", is it that you see the message about singular jacobian, or is it that you see something else happen? And for certainty, Nmf must be a positive integer right? And does the code fail when Nmf is exactly equal to 4, or only when Nmf is greater than 4 (that is, 5 or higher) ?
You have a number of global variables whose values we do not know, so we cannot test your code.
  1 Comment
Amir K Neghab
Amir K Neghab on 1 Dec 2011
Dear Walter,
Thanks for responding.
1. "x=" line is before the "solinit=" in my file
2. yes, Nmf is a positive integer.
3. The code gives me singular jacobian error when Nmf is >=4. I mean it only works for Nmf=1 (mode -1,0 and+1) Nmf=2 (Mode -2,-1,...,+1&2) and Nmf=3 (Mode -3,-2,...,+3)
4. The global variables are :
Nmf=1; % Number of Fourier Modes of Mean Flow
alpha=5;
Re=0.05;
Pr=0.71;
Ra=2000;
NR=6;
6. if you need more info I can send you my code to your email address.
Thanks again for your time

Sign in to comment.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!