HI EVERY ONE how can i develop a general equation for the training neural net work results as shown below and how can i make these equations linear or non linear
1 view (last 30 days)
Show older comments
muqdad aljuboori
on 20 Aug 2015
Answered: Greg Heath
on 28 Aug 2015
% ===== NEURAL NETWORK CONSTANTS =====
% Input 1
x1_step1_xoffset = [0.335;0.335;0.501;0.102];
x1_step1_gain = [3.01659125188537;3.01659125188537;4.01606425702811;2.23214285714286];
x1_step1_ymin = -1;
% Layer 1
b1 = [0.70223325258608282;0.24104166905986787;0.15348156236755661;0.71745208472067135;1.0923437909596025;-0.95136708708664663;-0.2046868130938489;0.69549692559132981;0.70255125958906395;0.53378139024323834];
IW1_1 = [0.31553367340711991 -0.40137059105569073 -0.22075607834007485 0.5348647692271854;-0.092030091983253126 -0.28374584174349826 0.20649380927946556 0.35735939709861786;0.32776169040220832 0.050294626086545419 0.079667428618699215 0.50081651896574708;-0.14811804808977719 0.38151873789393176 0.017981906558287995 0.66424811151304852;-0.37652540039941323 0.97877832998161851 -0.077044057346401851 -0.51900261587883245;-0.32720151455381563 0.42742966055003245 -0.35517724643687826 0.50098153225098097;-0.051448362732210991 0.0082648279513306416 -0.86709811026715733 -0.39857638994588535;0.46109450080528508 -0.066531109937333383 -0.041113866300515452 -0.56353092984647901;0.80083018038171372 -0.88583750768332392 -0.063517585064946633 0.81425789700412732;0.079986908269888413 -0.22913002954215689 -0.31306995793356845 -0.38078052790236266];
% Layer 2
b2 = [0.091922137693532732;-0.019433047791502147;0.69939781374412402];
LW2_1 = [0.55261567997791849 0.1160223164052863 -0.047616424378837022 0.42605645022894073 -0.10415185746376703 0.06618768395919053 0.0010938058921189939 -0.6341905607646755 -0.012011661547148993 -0.69437567292807567;0.17306699275597687 0.89820835369168806 0.58079560414251308 0.18560768732162328 0.31513562885346247 0.67277236054086276 0.36880119902800917 0.18586934718597467 -0.083078511715570055 -0.86733076931692943;-0.95085049127019827 0.06753786869036002 -0.42801674583698929 0.94677747671052259 -0.91050254600951541 0.049169317644063827 0.30599676599180614 -0.53164266498283019 0.78422577249919112 -0.54830037775898877];
% Output 1
y1_step1_ymin = -1;
y1_step1_gain = [2.17155266015201;2.1978021978022;4.96277915632754];
y1_step1_xoffset = [0.075;0.075;0.034];
% ===== SIMULATION ========
% Dimensions
Q = size(x1,2); % samples
% Input 1
xp1 = mapminmax_apply(x1,x1_step1_gain,x1_step1_xoffset,x1_step1_ymin);
% Layer 1
a1 = tansig_apply(repmat(b1,1,Q) + IW1_1*xp1);
% Layer 2
a2 = repmat(b2,1,Q) + LW2_1*a1;
% Output 1
y1 = mapminmax_reverse(a2,y1_step1_gain,y1_step1_xoffset,y1_step1_ymin);
end
% ===== MODULE FUNCTIONS ========
% Map Minimum and Maximum Input Processing Function function y = mapminmax_apply(x,settings_gain,settings_xoffset,settings_ymin) y = bsxfun(@minus,x,settings_xoffset); y = bsxfun(@times,y,settings_gain); y = bsxfun(@plus,y,settings_ymin); end
% Sigmoid Symmetric Transfer Function function a = tansig_apply(n) a = 2 ./ (1 + exp(-2*n)) - 1; end
% Map Minimum and Maximum Output Reverse-Processing Function function x = mapminmax_reverse(y,settings_gain,settings_xoffset,settings_ymin) x = bsxfun(@minus,y,settings_ymin); x = bsxfun(@rdivide,x,settings_gain); x = bsxfun(@plus,x,settings_xoffset); end
1 Comment
Candy Swift
on 20 Aug 2015
Good question asked. I also have similar problem with you. Let's wait for others to help.
Candy Swift
Accepted Answer
Greg Heath
on 28 Aug 2015
I have posted this answer several times in other posts. Try searching ANSWERS and the NEWSGROUP using
neural analytic greg
Hope this helps.
Thank you for formally accepting my answer
Greg
0 Comments
More Answers (0)
See Also
Categories
Find more on Sequence and Numeric Feature Data Workflows in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!