HI EVERY ONE how can i develop a general equation for the training neural net work results as shown below and how can i make these equations linear or non linear

1 view (last 30 days)
% ===== NEURAL NETWORK CONSTANTS =====
% Input 1
x1_step1_xoffset = [0.335;0.335;0.501;0.102];
x1_step1_gain = [3.01659125188537;3.01659125188537;4.01606425702811;2.23214285714286];
x1_step1_ymin = -1;
% Layer 1
b1 = [0.70223325258608282;0.24104166905986787;0.15348156236755661;0.71745208472067135;1.0923437909596025;-0.95136708708664663;-0.2046868130938489;0.69549692559132981;0.70255125958906395;0.53378139024323834];
IW1_1 = [0.31553367340711991 -0.40137059105569073 -0.22075607834007485 0.5348647692271854;-0.092030091983253126 -0.28374584174349826 0.20649380927946556 0.35735939709861786;0.32776169040220832 0.050294626086545419 0.079667428618699215 0.50081651896574708;-0.14811804808977719 0.38151873789393176 0.017981906558287995 0.66424811151304852;-0.37652540039941323 0.97877832998161851 -0.077044057346401851 -0.51900261587883245;-0.32720151455381563 0.42742966055003245 -0.35517724643687826 0.50098153225098097;-0.051448362732210991 0.0082648279513306416 -0.86709811026715733 -0.39857638994588535;0.46109450080528508 -0.066531109937333383 -0.041113866300515452 -0.56353092984647901;0.80083018038171372 -0.88583750768332392 -0.063517585064946633 0.81425789700412732;0.079986908269888413 -0.22913002954215689 -0.31306995793356845 -0.38078052790236266];
% Layer 2
b2 = [0.091922137693532732;-0.019433047791502147;0.69939781374412402];
LW2_1 = [0.55261567997791849 0.1160223164052863 -0.047616424378837022 0.42605645022894073 -0.10415185746376703 0.06618768395919053 0.0010938058921189939 -0.6341905607646755 -0.012011661547148993 -0.69437567292807567;0.17306699275597687 0.89820835369168806 0.58079560414251308 0.18560768732162328 0.31513562885346247 0.67277236054086276 0.36880119902800917 0.18586934718597467 -0.083078511715570055 -0.86733076931692943;-0.95085049127019827 0.06753786869036002 -0.42801674583698929 0.94677747671052259 -0.91050254600951541 0.049169317644063827 0.30599676599180614 -0.53164266498283019 0.78422577249919112 -0.54830037775898877];
% Output 1
y1_step1_ymin = -1;
y1_step1_gain = [2.17155266015201;2.1978021978022;4.96277915632754];
y1_step1_xoffset = [0.075;0.075;0.034];
% ===== SIMULATION ========
% Dimensions
Q = size(x1,2); % samples
% Input 1
xp1 = mapminmax_apply(x1,x1_step1_gain,x1_step1_xoffset,x1_step1_ymin);
% Layer 1
a1 = tansig_apply(repmat(b1,1,Q) + IW1_1*xp1);
% Layer 2
a2 = repmat(b2,1,Q) + LW2_1*a1;
% Output 1
y1 = mapminmax_reverse(a2,y1_step1_gain,y1_step1_xoffset,y1_step1_ymin);
end
% ===== MODULE FUNCTIONS ========
% Map Minimum and Maximum Input Processing Function function y = mapminmax_apply(x,settings_gain,settings_xoffset,settings_ymin) y = bsxfun(@minus,x,settings_xoffset); y = bsxfun(@times,y,settings_gain); y = bsxfun(@plus,y,settings_ymin); end
% Sigmoid Symmetric Transfer Function function a = tansig_apply(n) a = 2 ./ (1 + exp(-2*n)) - 1; end
% Map Minimum and Maximum Output Reverse-Processing Function function x = mapminmax_reverse(y,settings_gain,settings_xoffset,settings_ymin) x = bsxfun(@minus,y,settings_ymin); x = bsxfun(@rdivide,x,settings_gain); x = bsxfun(@plus,x,settings_xoffset); end

Accepted Answer

Greg Heath
Greg Heath on 28 Aug 2015
I have posted this answer several times in other posts. Try searching ANSWERS and the NEWSGROUP using
neural analytic greg
Hope this helps.
Thank you for formally accepting my answer
Greg

More Answers (0)

Categories

Find more on Sequence and Numeric Feature Data Workflows in Help Center and File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!