Bad result / high deviation using procrustes

2 views (last 30 days)
I try using procrustes to get the transformation between two point sets, each with 4 points. Manually I found a transformation, that aligns the two point set quite good (TFM_Ref). But the transformation calculated by procrustes (TFM_PcR) is quite bad compared to TFM_Ref.
clearvars
%%Data
S =[-52.0000 0 0;
11.5000 25.0000 0;
53.0000 0 0;
-20.0000 -42.0000 0];
T =[ 0 0 2.71;
42.4000 -23.2300 0;
104.5800 4.4400 0;
70.9000 45.1900 0];
%%Test transformation (determined manually)
TFM_Ref = [-0.9991 -0.0427 0 53.0000;
0.0427 -0.9991 0 0 ;
0 0 1.0000 0 ;
0 0 0 1.0000];
S2T_Ref = unique(transformPointsInverse(affine3d(TFM_Ref'), S),'rows');
T_Ref = unique(T,'rows');
RMSE_Ref = rms(rms(T_Ref-S2T_Ref))
%%Procrustes
[~,~,transform] = procrustes(T, S, 'scaling',0, 'reflection',0);
TFM_PrC = inv([[transform.T', transform.c(1,:)']; 0 0 0 1]);
S2T_PrC = unique(transformPointsInverse(affine3d(TFM_PrC'), S), 'rows');
RMSE_PrC = rms(rms(T_Ref-S2T_PrC))

Accepted Answer

Fritz
Fritz on 11 Dec 2015
Edited: Fritz on 11 Dec 2015
I found a solution using procrustes with all permutations of the source points. The best transformation is the one with the minimum dissimilarity measure.
clearvars
%%Data
Source =[-52.00 0 0;
11.50 25.00 0;
53.00 0 0;
-20.00 -42.00 0];
Target =[ 0 0 2.71;
42.40 -23.23 0 ;
104.58 4.44 0 ;
70.90 45.19 0 ];
%%Procrustes
IndexPermutations = perms(1:size(Source,1)); % All permutations of the indices of Source
for i=1:length(IndexPermutations)
[D(i,1), ~, TFMs(i)] = procrustes(Target, Source(IndexPermutations(i,:),:), ...
'scaling',0, 'reflection',0); % Try procrustes with all permutations
end
[DMin, I_DMin] = min(D); % Get the index of the smallest dissimilarity measure
TFM = [[TFMs(I_DMin).T', TFMs(I_DMin).c(1,:)']; 0 0 0 1]; % Create the transformation
Source = Source(IndexPermutations(I_DMin,:),:);
Source_tfmd = transformPointsForward(affine3d(TFM'), Source);
rms(rms(Target-Source_tfmd))

More Answers (0)

Categories

Find more on Dimensionality Reduction and Feature Extraction in Help Center and File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!