program for clutter filtering through doppler extraction
9 views (last 30 days)
Show older comments
need a program for clutter filtering in radar through doppler extraction
0 Comments
Answers (1)
AR
on 20 Jun 2025
To perform clutter filtering, we can use a high-pass filter (e.g., Butterworth) to suppress low-frequency clutter (stationary/slow-moving objects) while preserving high-frequency Doppler shifts from moving targets.
Follow these steps to create a radar clutter filtering program using Doppler extraction:
1. Define radar and simulation parameters
numRangeBins = 128; % Number of range bins
numPulses = 64; % Number of pulses in one coherent processing interval (CPI)
prf = 1e3; % Pulse Repetition Frequency (Hz)
fc = 10e9; % Radar carrier frequency (Hz)
c = 3e8; % Speed of light (m/s)
2. Simulate raw radar data Including clutter and targets
data = complex(zeros(numRangeBins, numPulses));
clutterAmplitude = 5;
data = data + clutterAmplitude * (randn(numRangeBins, numPulses) + 1i * randn(numRangeBins, numPulses));
targetRanges = [30, 90]; % Target positions (in range bins)
targetDopplers = [0.25*prf, -0.2*prf]; % Target Doppler frequencies
targetAmplitudes = [1, 0.8]; % Signal strength of targets
for idx = 1:length(targetRanges)
rangeBin = targetRanges(idx);
t = (0:numPulses-1)/prf;
dopplerPhase = 2 * pi * targetDopplers(idx) * t;
data(rangeBin, :) = data(rangeBin, :) + targetAmplitudes(idx) * exp(1i * dopplerPhase);
end
3. Design a High-Pass Filter to suppress clutter
filterOrder = 5;
normalizedCutoff = 0.1; % Normalized to Nyquist (0.1 = 10% of PRF)
[b, a] = butter(filterOrder, normalizedCutoff, 'high');
4. Apply clutter filter
filteredData = zeros(size(data));
for rangeBin = 1:numRangeBins
filteredData(rangeBin, :) = filter(b, a, data(rangeBin, :));
end
5. Perform doppler FFT for target extraction
fftPoints = 1024; % Number of points in Doppler FFT
dopplerAxis = linspace(-prf/2, prf/2, fftPoints); % Doppler frequency axis
% Compute Doppler spectra (FFT across slow-time dimension)
originalFFT = fftshift(fft(data, fftPoints, 2), 2);
filteredFFT = fftshift(fft(filteredData, fftPoints, 2), 2);
6. Visualize the results
figure('Position', [100, 100, 1200, 800])
tiledlayout(2, 1, 'TileSpacing', 'tight', 'Padding', 'compact');
% (a) Original Range-Doppler Map
nexttile
imagesc(dopplerAxis, 1:numRangeBins, 20*log10(abs(originalFFT)))
xlabel('Doppler Frequency (Hz)'), ylabel('Range Bin')
title('Original Range-Doppler Map')
colorbar, clim([0 50]), axis xy, grid on
% (b) Doppler Spectrum at a Selected Range Bin
nexttile
rangeBin2Plot = targetRanges(1);
plot(dopplerAxis, 20*log10(abs(originalFFT(rangeBin2Plot, :))), 'b', 'LineWidth', 1.5);
hold on
plot(dopplerAxis, 20*log10(abs(filteredFFT(rangeBin2Plot, :))), 'r', 'LineWidth', 1.5);
xlabel('Doppler Frequency (Hz)'), ylabel('Magnitude (dB)')
title(['Doppler Spectrum at Range Bin ', num2str(rangeBin2Plot)])
legend('Original', 'Filtered', 'Location', 'best')
xlim([-prf/2, prf/2]), grid on
You can refer to the following documentation pages for more information:
0 Comments
See Also
Categories
Find more on Environment and Clutter in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!