Solution Using Jacobi and Gauss Seidel Method.
2 views (last 30 days)
Show older comments
Hi,
I am facing problem regarding the solution of the foll problem:
W(m+1)(j,k)=Pm(j,k)+Q(j,k)/2*g(j,k) Where: P(j,k)=[W(j+1,k)+W(j-1,k)+W(j,k+1)+W(j,k-1)]/g(j,k) Q(j,k)=Sy(j,k+1)- Sy(j,k-1)+ Sx(j+1,k)-Sy(j-1,k) m=m-th iterations(say 4) g(j,k)={2, if j=1:N or k=1:N 3, if j=1:N or k=2:N-1, k=1:N or j=2:N-1 4 otherwise} N=128
Sx=sqrt(8).*(9.*X.^3+3.*Y.^2-2)
Sy=sqrt(8).*(6.*X.*Y)
And [X,Y] =meshgrid(-1:2/127:+1,-1:2/127:+1)
Which will give us the Q-matrix
The initial W-matrix is assumed to be a zero matrix having all the elements zero(128x128).
Can anyone help me in solving this problem using 1] Jacobi Method, and 2] Gauss Seidel Method upto a iteration of 4 in MATLAB.
1 Comment
Walter Roberson
on 23 Jan 2012
http://www.mathworks.com/matlabcentral/answers/13205-tutorial-how-to-format-your-question-with-markup
See Also
Categories
Find more on Numerical Integration and Differential Equations in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!