Hi, my prob is find the most accurate 1st derivative of f(x)=exp(cos(x)) at x=1, with h=0.5,0.25,..,2^(-16). I calculate the 1st der. using 1st order central diff formula & trying to improve the accuracy using Richardson extrap. got incorrect result
1 view (last 30 days)
Show older comments
clear; clc; format shortG
f = @(x) exp(cos(x)); df = @(x) -exp(cos(x))*sin(x);
x = 1; Truef1 = df(x); A = [];
h = 1/2;
while (h >= 2^-16)
f1 = (f(x+h)-f(x-h))/(2*h);
A = [A; h f1];
h = h/2;
end
D(:,1) = A(:,2); E(:,1) = abs((Truef1-D(:,1))/Truef1);
for i = 1:16
for j = 2:i
D(i,j) = ((4^j)*D(i,j-1)-D(i-1,j-1))/(4^j-1);
E(i,j) = abs((Truef1-D(i,j))/Truef1);
end
end
disp(D); disp(E);
Order = (log(E(3,2))-log(E(2,2)))/(log(A(3,1))-log(A(2,1)))
loglog(A(:,1),E,'-');
1 Comment
John D'Errico
on 9 Mar 2016
Edited: John D'Errico
on 9 Mar 2016
Please learn to use the {} Code button when you post code. As you have posted it, this is unreadable.
Select the block of code, then click on the "{} Code" button. I'll fix it once for you.
Answers (0)
See Also
Categories
Find more on Filter Analysis in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!