How to include in-plane displacements in the PDE solver?
3 views (last 30 days)
Show older comments
Hi there,
There is an example available for calculating the deflection w of a uniformly loaded, isotropic plate using the PDE solver (not the pdetool):
The boundary conditions are expressed as:
k = 1e7; % spring stiffness
bOuter = applyBoundaryCondition(pdem,'Edge',(1:4), 'g', [0 0], 'q', [0 0; k 0]);
So I wonder,
- How can plane stresses sigma_x and sigma_y be calculated?
- How can in-plane displacements (perpendicular to w) be included as boundary conditions in the formulation of the problem?
Also, the solution to the elliptical PDE:
res = solvepde(pdem);
outputs something like:
res =
StationaryResults with properties:
NodalSolution: [100x2 double]
XGradients: [100x2 double]
YGradients: [100x2 double]
ZGradients: [0x2 double]
Mesh: [1x1 FEMesh]
I assume that XGradient and YGradient are the dw/dx and dw/dy respectively. My other question is then, how can the second derivative d2w/dx2 and d2w/dy2 can be estimated?
Thanks!
0 Comments
Answers (1)
Vaibhav Awale
on 6 May 2016
Hi Henry,
I will try to answer the questions that I know.
1) You can refer to this example . PDE app is used in this case to find plane stress and strain. However, you can do it using PDE toolbox command line approach as well.
2) I am not sure what you mean by in plane displacement at boundary.
3) Looking at the way the problem is formulated, res.NodalSolution consists of solution to [u1, u2] where u1 = w u2 = \Delta^2 w = v
and XGradient and YGradient are gradients in x and y direction respectively for u1 and u2.
I hope this answers your queries.
Regards,
Vaibhav
See Also
Categories
Find more on PDE Solvers in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!