Seemingly Unrelated Regressions (SUR) with equivalent of the White or Newey-West covariance matrix?
8 views (last 30 days)
Show older comments
From http://www.mathworks.com/examples/econometrics/mw/econ-ex83533901-implement-seemingly-unrelated-regression-analyses: "SUR accommodates intra-period innovation heteroscedasticity and correlation, but inter-period innovation independence and homoscedasticity".
I would like to estimate an SUR system which is also robust to heteroscedasticity and serial correlation within each panel, i.e. inter-period. How can I incorporate the White or better yet Newey-West covariance matrix for SUR in Matlab?
So far I have followed http://www.mathworks.com/examples/econometrics/mw/econ-ex83533901-implement-seemingly-unrelated-regression-analyses#9 and have a working multivariate time series model where all predictors are used for each response series.
Setting:
%n is the Number of response series
%k is the Number of exogenous series
%T = time series dimension
%Y is a Txn matrix
%X is a Txk matrix
n=3
T=100
k=4
X = randn(100,k)
Y = randn(100,n)
%sample code for SUR in MATLAB based on the link above:
ExpandX = kron(X,eye(n));
nk = size(ExpandX,2); % Number of regression variables
CellX = mat2cell(ExpandX,n*ones(T,1));
Mdl1 = vgxset('n',n,'nX',nk,'Constant',true);
[Mdl1_Est,Mdl1_SE,~,Mdl1_W] = vgxvarx(Mdl1,Y,CellX);
vgxdisp(Mdl1_Est,Mdl1_SE)
Thanks in advance for any help with getting White or HAC-style standard errors in SUR.
0 Comments
Answers (1)
Hang Qian
on 10 Jun 2016
Hi Ilona,
Suppose that we have a SUR with n equations and T periods.
First, estimate a SUR system using the function VGXVARX(...), which returns both estimated coefficients and the n-by-n intra-period covariance matrix S. It should be a consistent estimator even if the inter-period correlations are not addressed in this step.
Second, transform the data: multiply both y and X by chol(inv(S)). The transformed data do not have intra-period correlations any more.
Third, pool the transformed y and X as if they were stacked as a single-equation with n*T observations, and call the function hac(...), which returns White and Newey-West standard errors. It helps to fight inter-period heteroscedasticity and serial correlation.
Regards,
Hang Qian
See Also
Categories
Find more on Conditional Mean Models in Help Center and File Exchange
Products
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!