Function interpolation by solving linear system
4 views (last 30 days)
Show older comments
For interpolate a data set into an nth degree polynomial, we have to have n + 1 (x,...,(f(x,...))) . It means, for example, that if I want interpolate a data points into a third degree polynomial, I have to be four data points.
Ok, however, if I want, for example, interpolate n + x points (x is a natural number / x > 1) into a nth degree polynomial, I will have a linear system with more equations than variables. Can Matlab solve this interpolation case? For example: can Matlab interpolate sin (x) = z, with x = 0, 0.25, 0.5, 0.75, 1, 1.25,..., 90, into a fifth degree polynomial?
0 Comments
Answers (1)
KSSV
on 4 Jul 2016
clc; clear all
x = linspace(0,pi/2,50) ;
y = sin(x) ;
plot(x,y,'r')
n = 5 ; % order of the polynomial
p = polyfit(x,y,n) ;
x1 = linspace(0,pi/2,100);
y1 = polyval(p,x1);
hold on
plot(x1,y1,'.b' )
See Also
Categories
Find more on Interpolation in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!