how to make inverse fourrier transform in the correct way?
2 views (last 30 days)
Show older comments
as you can see in my code, i made a fft of a simple signal but when i try to reconstruct it using ifft i can only see it in the ABS way, meaning that the ifft that i made is incorrect, please let me know what i did wrong
clear all
close all
clc
Ts=0.001;
t=0:Ts:10;
omega1=2*pi*15;
omega2=2*pi*40;
x=sin(omega1*t)+sin(omega2*t);
figure(1)
subplot(4,1,1)
plot(t,x)
grid on
xlim([0 0.1*pi])
title('\bf x=sin(\omega_1t)+sin(\omega_2t)')
xlabel('t[sec]')
ylabel('x(t)')
X_dft=fftshift(fft(x))/length(x);
Fs=1/Ts;
f=linspace(-Fs/2,Fs/2,length(t));
subplot(4,1,2)
plot(f,abs(X_dft))
grid on
xlim([-60 60])
title('\bf |Fourrier(x)|')
xlabel('f[Hz]')
ylabel('|X(f)|')
subplot(4,1,3)
X_phase=angle(X_dft);
plot(f,X_phase)
grid on
xlim([-60 60])
title('\bf Phase(x)')
xlabel('f[Hz]')
ylabel('Angle (\theta) [Radians]')
subplot(4,1,4)
x_ifft=abs(ifft(X_dft))*length(x);
plot(t,x_ifft)
grid on
xlim([0 0.1*pi])
title('\bf |x=sin(\omega_1t)+sin(\omega_2t)|')
xlabel('t[sec]')
ylabel('|x(t)|')
5 Comments
Adam
on 7 Jul 2016
That probably comes from doing an fftshift - this is un-necessary and indeed gives incorrect results when applying an ifft to its result.
Accepted Answer
Thorsten
on 7 Jul 2016
Simple as this:
u = fft(x);
x2 = ifft(u);
The difference is within the tolerance of machine precision:
max(abs(x - x2))
ans =
3.10862446895044e-15
0 Comments
More Answers (0)
See Also
Categories
Find more on Fourier Analysis and Filtering in Help Center and File Exchange
Products
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!