Apply Gauss Quadrature formula to the following equation
10 views (last 30 days)
Show older comments
given the equation
d = gm/c integral [0,10] [1 - exp(-(c/m)t)]dt
g = 9.8
c = 12.5
m = 68.1
employ two- through six-point gauss-legendre formulas to solve.
I have no idea what i'm doing and would love help.
0 Comments
Answers (1)
Torsten
on 17 Nov 2016
Edited: Torsten
on 17 Nov 2016
You are supposed to evaluate
5*sum_{i=1}^{i=n} w_i*f(5*x_i+5)
with
f(x) = g*m/c*(1 - exp(-(c/m)x))
for n = 2,3,4,5,6 and the corresponding x_i and w_i specified under
https://pomax.github.io/bezierinfo/legendre-gauss.html
(or in your textbook).
Best wishes
Torsten.
2 Comments
Torsten
on 18 Nov 2016
To approximate the integral, the function f is evaluated at n intermediate x-values in the interval [a,b]. The n function values so obtained are then weighted by the w_i and summed - that's all.
I think it's best if you first try to understand the procedure from a textbook before you start programming.
Best wishes
Torsten.
See Also
Categories
Find more on Numerical Integration and Differential Equations in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!