Error using trainFasterRCNNObjectDetector
3 views (last 30 days)
Show older comments
RCNN was working well i just change the function name to trainFasterRCNNObjectDetector and I have this error I dont understand as the algorithm success to traing the RPN ..
Error using vision.internal.cnn.fastrcnn.RegionReader (line 146) Unable to find any region proposals to use as positive or negative training samples.
*** | | | | _ _**********************************************************************
Training a Faster R-CNN Object Detector for the following object classes:
* stem
Step 1 of 4: Training a Region Proposal Network (RPN).
|=========================================================================================|
| Epoch | Iteration | Time Elapsed | Mini-batch | Mini-batch | Base Learning|
| | | (seconds) | Loss | Accuracy | Rate |
|=========================================================================================|
| 1 | 1 | 73.10 | 0.7613 | 57.81% | 1.00e-04 |
| 1 | 50 | 3588.44 | 0.8843 | 49.21% | 1.00e-04 |
| 2 | 100 | 7138.63 | 0.8157 | 49.21% | 1.00e-04 |
| 3 | 150 | 10567.96 | 0.5309 | 90.48% | 1.00e-04 |
| 3 | 200 | 13992.71 | 0.4853 | 93.75% | 1.00e-04 |
| 4 | 250 | 17495.29 | 0.4534 | 95.31% | 1.00e-04 |
| 5 | 300 | 20907.92 | 0.5276 | 81.25% | 1.00e-04 |
| 5 | 350 | 24321.68 | 0.4508 | 95.31% | 1.00e-04 |
| 6 | 400 | 27764.91 | 0.4548 | 96.88% | 1.00e-04 |
| 7 | 450 | 31263.06 | 0.3596 | 95.31% | 1.00e-04 |
| 7 | 500 | 34683.48 | 0.4480 | 96.88% | 1.00e-04 |
| 8 | 550 | 38116.15 | 0.4450 | 92.06% | 1.00e-04 |
| 9 | 600 | 41608.04 | 0.3407 | 96.88% | 1.00e-04 |
| 9 | 650 | 45094.22 | 0.4522 | 96.88% | 1.00e-04 |
| 10 | 700 | 48521.79 | 0.3036 | 98.44% | 1.00e-04 |
| 10 | 730 | 50591.95 | 0.3237 | 98.44% | 1.00e-04 |
|=========================================================================================|
Step 2 of 4: Training a Fast R-CNN Network using the RPN from step 1.
*******************************************************************
Training a Fast R-CNN Object Detector for the following object classes:
* stem
--> Extracting region proposals from 92 training images...done.
Error using vision.internal.cnn.fastrcnn.RegionReader (line 146)
Unable to find any region proposals to use as positive or negative training samples.
Error in vision.internal.cnn.fastrcnn.TrainingRegionDispatcher (line 63)
vision.internal.cnn.fastrcnn.RegionReader(...
Error in fastRCNNObjectDetector/createTrainingDispatcher (line 667)
dispatcher = vision.internal.cnn.fastrcnn.TrainingRegionDispatcher(...
Error in fastRCNNObjectDetector.train (line 173)
dispatcher = createTrainingDispatcher(...
Error in trainFasterRCNNObjectDetector (line 297)
[~, fastRCNN] = fastRCNNObjectDetector.train(trainingData, fastRCNN, options(2), params, checkpointSaver);
Error in mainFast (line 47)
rcnnFaster = trainFasterRCNNObjectDetector(wheatT, convnet, options, ...__||||
4 Comments
longbin yan
on 27 Jan 2018
https://cn.mathworks.com/matlabcentral/answers/354274-error-using-trainfastrcnnobjectdetector
Matpar
on 23 Feb 2020
Hey Simon MADEC , I have been working on RCNN do you mine sharing your code here so that i can see where I went wrong in my exercise! I am trying to classify an object for a while and I am still have some challenges.
can you asssist please if you have a working code!
thanx
Answers (6)
Kyle Webb
on 28 Aug 2017
There is definitely something going wrong with this function in MATLAB. I've generated some ground truth table, to debug just for one object class. The FasterRCNNObjectDetector passed the first 3 stages with high accuracy but fails at the 4th step. But then, a run the same code a few more times, and then suddenly it works without changing any input and clearing the workspace every run. If the input arguments of FasterRCNNObjectDetector the was wrong, it would fail every time, but this is not the case.
One of the lucky times:
Training a Faster R-CNN Object Detector for the following object classes:
D10
Step 1 of 4: Training a Region Proposal Network (RPN).
|=========================================================================================|
| Epoch | Iteration | Time Elapsed | Mini-batch | Mini-batch | Base Learning|
| | (seconds) | Loss | Accuracy | Rate |
|=========================================================================================|
| 1 | 1 | 0.27 | 0.7420 | 58.06% | 1.00e-04 |
| 1 | 50 | 2.86 | 0.4674 | 93.75% | 1.00e-04 |
| 2 | 100 | 5.35 | 0.1598 | 100.00% | 1.00e-04 |
| 3 | 150 | 7.74 | 0.1689 | 100.00% | 1.00e-05 |
| 4 | 200 | 10.25 | 0.2533 | 100.00% | 1.00e-05 |
| 5 | 250 | 12.67 | 0.0867 | 100.00% | 1.00e-06 |
|=========================================================================================|
Step 2 of 4: Training a Fast R-CNN Network using the RPN from step 1.
*******************************************************************
Training a Fast R-CNN Object Detector for the following object classes:
* D10
--> Extracting region proposals from 50 training images...done.
|=========================================================================================|
| Epoch | Iteration | Time Elapsed | Mini-batch | Mini-batch | Base Learning|
| | | (seconds) | Loss | Accuracy | Rate |
|=========================================================================================|
| 1 | 1 | 0.16 | 0.8390 | 100.00% | 0.0010 |
| 1 | 50 | 1.69 | 0.3630 | 100.00% | 0.0010 |
| 2 | 100 | 3.00 | 0.0643 | 100.00% | 0.0010 |
| 3 | 150 | 4.29 | 0.0136 | 100.00% | 0.0001 |
| 4 | 200 | 5.52 | 0.0029 | 100.00% | 0.0001 |
| 5 | 250 | 6.82 | 0.0040 | 100.00% | 1.00e-05 |
|=========================================================================================|
Step 3 of 4: Re-training RPN using weight sharing with Fast R-CNN.
|=========================================================================================|
| Epoch | Iteration | Time Elapsed | Mini-batch | Mini-batch | Base Learning|
| | | (seconds) | Loss | Accuracy | Rate |
|=========================================================================================|
| 1 | 1 | 0.08 | 0.7309 | 75.00% | 1.00e-05 |
| 1 | 50 | 2.42 | 0.3999 | 93.75% | 1.00e-05 |
| 2 | 100 | 4.83 | 0.3563 | 93.75% | 1.00e-05 |
| 3 | 150 | 7.22 | 0.3202 | 100.00% | 1.00e-06 |
| 4 | 200 | 9.53 | 0.2477 | 100.00% | 1.00e-06 |
| 5 | 250 | 11.87 | 0.3382 | 96.77% | 1.00e-07 |
|=========================================================================================|
Step 4 of 4: Re-training Fast R-CNN using updated RPN.
*******************************************************************
Training a Fast R-CNN Object Detector for the following object classes:
* D10
--> Extracting region proposals from 50 training images...done.
|=========================================================================================|
| Epoch | Iteration | Time Elapsed | Mini-batch | Mini-batch | Base Learning|
| | | (seconds) | Loss | Accuracy | Rate |
|=========================================================================================|
| 1 | 1 | 0.07 | 0.3997 | 83.33% | 1.00e-05 |
| 1 | 50 | 1.49 | 0.3756 | 75.00% | 1.00e-05 |
| 2 | 100 | 3.02 | 0.2933 | 75.00% | 1.00e-05 |
| 3 | 150 | 4.50 | 0.2921 | 75.00% | 1.00e-06 |
| 4 | 200 | 5.92 | 0.2916 | 75.00% | 1.00e-06 |
| 5 | 250 | 7.33 | 0.2916 | 75.00% | 1.00e-07 |
|=========================================================================================|
Finished training Faster R-CNN object detector.
Then I clear everything and run the same script again with everything the same:
Step 4 of 4: Re-training Fast R-CNN using updated RPN.
*******************************************************************
Training a Fast R-CNN Object Detector for the following object classes:
* D10
--> Extracting region proposals from 50 training images...done.
Error using vision.internal.cnn.fastrcnn.RegionReader (line 146)
Unable to find any region proposals to use as positive or negative training samples.
Error in vision.internal.cnn.fastrcnn.TrainingRegionDispatcher (line 63)
vision.internal.cnn.fastrcnn.RegionReader(...
Error in fastRCNNObjectDetector/createTrainingDispatcher (line 667)
dispatcher = vision.internal.cnn.fastrcnn.TrainingRegionDispatcher(...
Error in fastRCNNObjectDetector.train (line 173)
dispatcher = createTrainingDispatcher(...
Error in trainFasterRCNNObjectDetector (line 359)
[~, frcnn] = fastRCNNObjectDetector.train(trainingData, fastRCNN, options(4), params, checkpointSaver);
Error in RCNN (line 119)
rcnn = trainFasterRCNNObjectDetector(groundtruth, net, options, ...
3 Comments
Wajahat Nawaz
on 21 May 2018
</matlabcentral/answers/uploaded_files/118461/Untitled.png> Dear all, I have run Faster rcnn in matlab but it stuck at second stage. can anyone facing problem like this. I have 3300 images of size 1200 x 1200. waiting for suitable answer.
2 Comments
Wei Guo
on 28 May 2018
I also stuck at the second stage. I use Matlab 2018a, the size of training image is 346*519 and it includes 472 training images in total.
LIU
on 27 Jul 2018
I even did not get any region proprosals! errors look like this:
*********************************************************************** Training a Faster R-CNN Object Detector for the following object classes:
- vehicle
Step 1 of 4: Training a Region Proposal Network (RPN). Training on single CPU. ========================================================================================= | Epoch | Iteration | Time Elapsed | Mini-batch | Mini-batch | Base Learning| | | | (seconds) | Loss | Accuracy | Rate =========================================================================================| | 1 | 1 | 1.89 | 0.6927 | 63.14% | 0.0010 10 | 20 | 43.55 | NaN | 57.03% | 0.0010 | =========================================================================================
Step 2 of 4: Training a Fast R-CNN Network using the RPN from step 1. ***************************************************************** Training a Fast R-CNN Object Detector for the following object classes:
- vehicle
--> Extracting region proposals from 2 training images...警告: An error occurred while using @(x)d.propose(x,minBoxSize,'MiniBatchSize',miniBatchSize) to process /usr/local/MATLAB/R2017b/toolbox/vision/visiondata/vehicles/image_00001.jpg:
需要的 第 2 个输入, score, 应为 有限。
Regions from this image will not be used for training. > In fastRCNNObjectDetector.invokeRegionProposalFcn (line 268) In fastRCNNObjectDetector>@(x,filename)fastRCNNObjectDetector.invokeRegionProposalFcn(fcnCopy,x,filename) (line 158) In fastRCNNObjectDetector.extractRegionProposals (line 218) In fastRCNNObjectDetector.train (line 168) In trainFasterRCNNObjectDetector (line 297) In testcnn2 (line 121) 警告: An error occurred while using @(x)d.propose(x,minBoxSize,'MiniBatchSize',miniBatchSize) to process /usr/local/MATLAB/R2017b/toolbox/vision/visiondata/vehicles/image_00002.jpg:
需要的 第 2 个输入, score, 应为 有限。
Regions from this image will not be used for training. > In fastRCNNObjectDetector.invokeRegionProposalFcn (line 268) In fastRCNNObjectDetector>@(x,filename)fastRCNNObjectDetector.invokeRegionProposalFcn(fcnCopy,x,filename) (line 158) In fastRCNNObjectDetector.extractRegionProposals (line 218) In fastRCNNObjectDetector.train (line 168) In trainFasterRCNNObjectDetector (line 297) In testcnn2 (line 121) done.
错误使用 vision.internal.cnn.fastrcnn.RegionReader (line 146) Unable to find any region proposals to use as positive or negative training samples.
出错 vision.internal.cnn.fastrcnn.TrainingRegionDispatcher (line 63) vision.internal.cnn.fastrcnn.RegionReader(...
出错 fastRCNNObjectDetector/createTrainingDispatcher (line 668) dispatcher = vision.internal.cnn.fastrcnn.TrainingRegionDispatcher(...
出错 fastRCNNObjectDetector.train (line 173) dispatcher = createTrainingDispatcher(...
出错 trainFasterRCNNObjectDetector (line 297) [~, fastRCNN] = fastRCNNObjectDetector.train(trainingData, fastRCNN, options(2), params, checkpointSaver);
出错 testcnn2 (line 121) detector = trainFasterRCNNObjectDetector(trainingData, layers, options, ...
what can I do???
0 Comments
See Also
Products
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!