Back propagation neural network
2 views (last 30 days)
Show older comments
I trained some data of about 40 points having 2 inputs and 2 targets. After training, the results shows that there is a direct relationship between the output and the target. But the regression value is 1 for the test, training and validation set while the error difference is almost 0 or negative. How do i improve the network performance to get a more reasonable result?
0 Comments
Answers (1)
Greg Heath
on 13 Jun 2017
Insufficient info. Which net? How did you compute regression?
The typical measure of regression performance is mean-square-error.
However, MSE is better understood if it is normalized by the maximum possible value: the average target variance, MSE00
E = target - output % error
MSE = mse(E) %
MSE00 = mean(var(target',1)) % maximum possible mean-square-error
NMSE = MSE/MSE00 & Normalized MSE: 0 <= NMSE <= 1
Hope this helps
Thank you for formally accepting my answer
Greg
0 Comments
See Also
Categories
Find more on Sequence and Numeric Feature Data Workflows in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!