Writing function based on a vector of roots

1 view (last 30 days)
In the following code, one of lines plotted is a vector of solutions to a nonlinear function (plotted against a parameter). I want to find the intersection point, but I don't know how to do it. Does anyone have any suggestion?
clc;
close all;
clear all;
lambda = 1;
Fprime = @(z) lambda.*exp(-lambda.*z);
F = @(z) 1-lambda.*exp(-lambda.*z);
F2prime = @(z) -lambda^2.*exp(-lambda.*z);
intz = @(z) (1-(lambda.*z+1).*exp(-lambda.*z))./lambda;
funz = @(z) z.*(1-F(z))+intz(z);
ph = 0.8;
pl = 0.4;
t = 0.6;
theta =1.3;
sigma = 0.6;
alpha=0.6;
epsilon = 0.1;
y = @(z,psi) (((ph-pl)/(1-t))*psi*(z.*(1-F(z))+intz(z))).^(1/theta);
u = @(z,psi) ph.*((1+epsilon).*y(z,psi)).^alpha + (1-ph).*y(z,psi).^alpha;
N2 = 200;
psigrid = linspace(.5,5,N2);
zbar2 = zeros(1,N2);
Gfun = @(z,psi) psi.*z;
rhs = @(z,psi) (sigma/.8).*(u(z,psi)-Gfun(z,psi)+(1-ph).*psi.*(1-F(z)).*z);
for k=1:N2
rhstest = @(z) rhs(z,psigrid(1,k));
Gfuntest = @(z) Gfun(z,psigrid(1,k));
zbarfun = @(z) rhstest(z) - Gfuntest(z);
zbar2(1,k) = fsolve(zbarfun,.2);
end
figure
plot(psigrid,zbar2);
hold on;
plot(psigrid,.3.*ones(1,N2));
  3 Comments
John
John on 1 Mar 2018
Strangely enough, it's still not showing...
Thank you very much for your help!
Star Strider
Star Strider on 1 Mar 2018
As always, my pleasure!
I’ve not heard back yet from Rena Berman. I’ll let you know. She might post back here as well, since I included the URL to your Question in my email to her.

Sign in to comment.

Accepted Answer

Star Strider
Star Strider on 1 Mar 2018
This will calculate the x-coordinate of the intersection, and plot a green pentagram there:
intx = interp1(zbar2, psigrid, 0.3, 'linear');
figure
plot(psigrid,zbar2)
hold on;
plot(psigrid,.3.*ones(1,N2))
plot(intx, 0.3, 'pg', 'MarkerFaceColor','g', 'MarkerSize',10)
hold off
The rest of your code (before and including the for loop) is unchanged, so I didn’t post it.

More Answers (0)

Categories

Find more on MATLAB in Help Center and File Exchange

Products

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!