how do i create a dataset for rcnn object detection and i need help on Rcnn object detection i.e how does it work line by line.

1 view (last 30 days)
data = load('fasterRCNNVehicleTrainingData.mat'); vehicleDataset = data.vehicleTrainingData; vehicleDataset(1:4,:)
% Add fullpath to the local vehicle data folder. dataDir = fullfile(toolboxdir('vision'),'visiondata'); vehicleDataset.imageFilename = fullfile(dataDir, vehicleDataset.imageFilename);
% Read one of the images. I = imread(vehicleDataset.imageFilename{10});
% Insert the ROI labels. I = insertShape(I, 'Rectangle', vehicleDataset.vehicle{10});
% Resize and display image. I = imresize(I, 3); figure imshow(I)
% Split data into a training and test set. idx = floor(0.6 * height(vehicleDataset)); trainingData = vehicleDataset(1:idx,:); testData = vehicleDataset(idx:end,:);
% Create image input layer. inputLayer = imageInputLayer([32 32 3]);
% Define the convolutional layer parameters. filterSize = [3 3]; numFilters = 32;
% Create the middle layers. middleLayers = [
convolution2dLayer(filterSize, numFilters, 'Padding', 1)
reluLayer()
convolution2dLayer(filterSize, numFilters, 'Padding', 1)
reluLayer()
maxPooling2dLayer(3, 'Stride',2)
];
finalLayers = [
% Add a fully connected layer with 64 output neurons. The output size
% of this layer will be an array with a length of 64.
fullyConnectedLayer(64)
% Add a ReLU non-linearity.
reluLayer()
% Add the last fully connected layer. At this point, the network must
% produce outputs that can be used to measure whether the input image
% belongs to one of the object classes or background. This measurement
% is made using the subsequent loss layers.
fullyConnectedLayer(width(vehicleDataset))
% Add the softmax loss layer and classification layer.
softmaxLayer()
classificationLayer()
];
layers = [ inputLayer middleLayers finalLayers ]
%Options for step 1. optionsStage1 = trainingOptions('sgdm', ... 'MaxEpochs', 10, ... 'InitialLearnRate', 1e-5, ... 'CheckpointPath', tempdir);
% Options for step 2. optionsStage2 = trainingOptions('sgdm', ... 'MaxEpochs', 10, ... 'InitialLearnRate', 1e-5, ... 'CheckpointPath', tempdir);
% Options for step 3. optionsStage3 = trainingOptions('sgdm', ... 'MaxEpochs', 10, ... 'InitialLearnRate', 1e-6, ... 'CheckpointPath', tempdir);
% Options for step 4. optionsStage4 = trainingOptions('sgdm', ... 'MaxEpochs', 10, ... 'InitialLearnRate', 1e-6, ... 'CheckpointPath', tempdir);
options = [ optionsStage1 optionsStage2 optionsStage3 optionsStage4 ];
% A trained network is loaded from disk to save time when running the % example. Set this flag to true to train the network. doTrainingAndEval = false;
if doTrainingAndEval % Set random seed to ensure example training reproducibility. rng(0);
% Train Faster R-CNN detector. Select a BoxPyramidScale of 1.2 to allow
% for finer resolution for multiscale object detection.
detector = trainFasterRCNNObjectDetector(trainingData, layers, options, ...
'NegativeOverlapRange', [0 0.3], ...
'PositiveOverlapRange', [0.6 1], ...
'BoxPyramidScale', 1.2);
else
% Load pretrained detector for the example.
detector = data.detector;
end
% Read a test image. I = imread('F:\Aditya\download.jpg');
% Run the detector. [bboxes, scores] = detect(detector, I);
% Annotate detections in the image. I = insertObjectAnnotation(I, 'rectangle', bboxes, scores); figure imshow(I)

Answers (0)

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!