How to give output name of image matched from template matching image processing method?

1 view (last 30 days)
hi, i have a code that will take the query image from webcam and will do some template matching process with image templates in database. after doing the template matching, i want the program to show the name of the template image matched from the database. how am i going to do that?

Accepted Answer

Florian Morsch
Florian Morsch on 18 May 2018
Create a if- statememt.
file = 'H:\user4\matlab\myfile.txt'; % example file
[filepath,name,ext] = fileparts(file)
If(condition to fullfill your if, like "ObjectFound == 1")
fprintf = ('file name is %s',name) % this will display the text in the command window.
end
  10 Comments
NUR SHOLIHAH RAMLEE
NUR SHOLIHAH RAMLEE on 30 May 2018
file1 = 'C:\Users\nuramlee\Desktop\MATTrain\sent\voltread1\100.txt'; % example file [filepath1,name1,ext1] = fileparts(file1 ) file2 = 'C:\Users\nuramlee\Desktop\MATTrain\sent\voltread1\120.txt'; % example file [filepath2,name2,ext2] = fileparts(file2 ) file3 = 'C:\Users\nuramlee\Desktop\MATTrain\sent\voltread1\220.txt'; % example file [filepath3,name3,ext3] = fileparts(file3 ) file4 = 'C:\Users\nuramlee\Desktop\MATTrain\sent\voltread1\240.txt'; % example file [filepath4,name4,ext4] = fileparts(file4 )
%specify the location of image dataDir = 'C:\Users\nuramlee\Desktop\MATTrain\sent\voltread1'; voltread = imageDatastore(dataDir);
%% %Index the image set. This process can take a few minutes. imageIndex = indexImages(voltread); % % figure; % % imshow(imageIndex); %% %select and display the query image %image must be in the 256x156 pixel size!% img = imread('100AA.bmp'); %Input image %Show input image figure, imshow(img); img = rgb2gray(img); img = double (img);
%%Canny Edge%% %Value for Thresholding T_Low = 0.075; T_High = 0.175;
%Gaussian Filter Coefficient B = [2, 4, 5, 4, 2; 4, 9, 12, 9, 4;5, 12, 15, 12, 5;4, 9, 12, 9, 4;2, 4, 5, 4, 2 ]; B = 1/159.* B;
%Convolution of image by Gaussian Coefficient A=conv2(img, B, 'same');
%Filter for horizontal and vertical direction KGx = [-1, 0, 1; -2, 0, 2; -1, 0, 1]; KGy = [1, 2, 1; 0, 0, 0; -1, -2, -1];
%Convolution by image by horizontal and vertical filter Filtered_X = conv2(A, KGx, 'same'); Filtered_Y = conv2(A, KGy, 'same');
%Calculate directions/orientations arah = atan2 (Filtered_Y, Filtered_X); arah = arah*180/pi;
pan=size(A,1); leb=size(A,2);
%Adjustment for negative directions, making all directions positive for i=1:pan for j=1:leb if (arah(i,j)<0) arah(i,j)=360+arah(i,j); end; end; end;
arah2=zeros(pan, leb);
%Adjusting directions to nearest 0, 45, 90, or 135 degree for i = 1 : pan for j = 1 : leb if ((arah(i, j) >= 0 ) && (arah(i, j) < 22.5) (arah(i, j) >= 157.5) && (arah(i, j) < 202.5) (arah(i, j) >= 337.5) && (arah(i, j) <= 360)) arah2(i, j) = 0; elseif ((arah(i, j) >= 22.5) && (arah(i, j) < 67.5) (arah(i, j) >= 202.5) && (arah(i, j) < 247.5)) arah2(i, j) = 45; elseif ((arah(i, j) >= 67.5 && arah(i, j) < 112.5) (arah(i, j) >= 247.5 && arah(i, j) < 292.5)) arah2(i, j) = 90; elseif ((arah(i, j) >= 112.5 && arah(i, j) < 157.5) (arah(i, j) >= 292.5 && arah(i, j) < 337.5)) arah2(i, j) = 135; end; end; end;
figure, imagesc(arah2); colorbar;
%Calculate magnitude magnitude = (Filtered_X.^2) + (Filtered_Y.^2); magnitude2 = sqrt(magnitude);
BW = zeros (pan, leb);
%Non-Maximum Supression for i=2:pan-1 for j=2:leb-1 if (arah2(i,j)==0) BW(i,j) = (magnitude2(i,j) == max([magnitude2(i,j), magnitude2(i,j+1), magnitude2(i,j-1)])); elseif (arah2(i,j)==45) BW(i,j) = (magnitude2(i,j) == max([magnitude2(i,j), magnitude2(i+1,j-1), magnitude2(i-1,j+1)])); elseif (arah2(i,j)==90) BW(i,j) = (magnitude2(i,j) == max([magnitude2(i,j), magnitude2(i+1,j), magnitude2(i-1,j)])); elseif (arah2(i,j)==135) BW(i,j) = (magnitude2(i,j) == max([magnitude2(i,j), magnitude2(i+1,j+1), magnitude2(i-1,j-1)])); end; end; end;
BW = BW.*magnitude2; figure, imshow(BW);
%Hysteresis Thresholding T_Low = T_Low * max(max(BW)); T_High = T_High * max(max(BW));
T_res = zeros (pan, leb);
for i = 1 : pan for j = 1 : leb if (BW(i, j) < T_Low) T_res(i, j) = 0; elseif (BW(i, j) > T_High) T_res(i, j) = 1; %Using 8-connected components elseif ( BW(i+1,j)>T_High BW(i-1,j)>T_High BW(i,j+1)>T_High BW(i,j-1)>T_High BW(i-1, j-1)>T_High BW(i-1, j+1)>T_High BW(i+1, j+1)>T_High BW(i+1, j-1)>T_High) T_res(i,j) = 1; end; end; end;
edge_final = uint8(T_res.*255); %Show final edge detection result figure, imshow(edge_final); queryImage = edge_final; % % figure % % imshow(queryImage) % % axes(handles.axes2) %% %retrieve the best matches. the [queryWords] output contains visual word %locations information for the query image. Use this information to %verify the search result. [imageIDs, ~, queryWords] = retrieveImages(queryImage,imageIndex);
%% %find the best match for the query image by extracting the visual words %from image index. the image index contains the visual word information %for all the images in index
bestMatch = imageIDs(1); bestImage = imread(imageIndex.ImageLocation{bestMatch}); bestMatchWords = imageIndex.ImageWords(bestMatch);
%% %Generate a set of tentative matches based on visual word assignments. %Each visual word in the query can have multiple matches %due to the hard quantization used to assign visual words.
queryWordsIndex = queryWords.WordIndex; bestMatchWordIndex = bestMatchWords.WordIndex;
tentativeMatches = []; for i = 1:numel(queryWords.WordIndex)
idx = find(queryWordsIndex(i) == bestMatchWordIndex);
matches = [repmat(i, numel(idx), 1) idx];
tentativeMatches = [tentativeMatches; matches];
end %% %Show the point locations for the tentative matches. %There are many poor matches.
points1 = queryWords.Location(tentativeMatches(:,1),:); points2 = bestMatchWords.Location(tentativeMatches(:,2),:); % % % % figure % % showMatchedFeatures(queryImage,bestImage,points1,points2,'montage') % % %% %Remove poor visual word assignments using estimateGeometricTransform function. %Keep the assignments that fit a valid geometric transform
[tform,inlierPoints1,inlierPoints2] = ... estimateGeometricTransform(points1,points2,'affine',... 'MaxNumTrials',20000);
%Rerank the search results by the percentage of inliers.
%Do this when the geometric verification procedure is applied to the top N search results.
%Those images with a higher percentage of inliers are more likely to be relevant.
percentageOfInliers = size(inlierPoints1,1)./size(points1,1);
% % figure % % showMatchedFeatures(queryImage,bestImage,inlierPoints1,... % % inlierPoints2,'montage')
%% %% %Apply the estimated transform. outputView = imref2d(size(bestImage)); Ir = imwarp(queryImage, tform, 'OutputView', outputView);
figure imshowpair(Ir,bestImage,'montage');
% example, you found match 3 match = bestImage; match1='100.txt';
if(match == 'string' name1); fprintf('file name is %s',name1 ) elseif(match == 120 ) fprintf('file name is %s',name2 ) elseif(match == 220 ) fprintf('file name is %s',name3 ) elseif(match == 240 ) fprintf('file name is %s',name4 ) end
the code is as follows.
NUR SHOLIHAH RAMLEE
NUR SHOLIHAH RAMLEE on 31 May 2018
hi florian, thank you for your suggestion yesterday. I already can give the name of the matched image as I want but, the answer will only printed inside the command prompt. as I changed the fprintf to msgbox, an error occurred as in the picture
%%%%%%%%%%%%%%
elseif(match == 2 ) fprintf('file name is %s',name2)
%%%%%%%%%%%%%%%%

Sign in to comment.

More Answers (0)

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!