How can I use gamma function in optimization problem
2 views (last 30 days)
Show older comments
epsilon_c = 10e-9; % unitless
lambda = 1e-3; % seconds
P_t = -30; % dB
d = 10; % m
L_H = 40; % bits
L_U = 16; %bits
M_1 = 10; %dB
N_o = -204; %dB
A_o = 30; %dB
m = 1;
alpha = 3;
%%%Variables for Solution
K = optimvar('K', 1, 1, 'Type', 'integer', 'LowerBound', 0, 'UpperBound', 10);
z = optimvar('z', 1, 1, 'Type', 'integer', 'LowerBound', 0, 'UpperBound',10);
%%%Linear Constraints
L = L_H+(K*L_U); % Packet length
R_b = L/lambda; % minimum bit rate
decisioncons = (K/2) - z <= 0;
beta = ((epsilon_c*gamma(m*z+1))^(1/(m*z))*P_t)\(m*N_o*M_1*A_o*d^alpha);
bandwidthcons = B(2^(R_b/B)-1) <= beta;
%%%Solve the Problem
commm = optimproblem('ObjectiveSense','minimize');
commm.Objective = B;
commm.Constraints.decisioncons = decisioncons;
commm.Constraints.bandwidthcons = bandwidthcons;
options = optimoptions('intlinprog','Display','final');
[commmsol,fval,exitflag,output] = solve(commm,'options',options);
sol = commmsol.B
Error:
Undefined function
'gamma' for input
arguments of type
'optim.problemdef.OptimizationExpression'.
3 Comments
Matt J
on 22 Nov 2022
Edited: Matt J
on 22 Nov 2022
@Michele Carone No, you can use the gamma function in the solver-based framework, e.g.,
xoptimal=fmincon(@(x) gamma(x).^2, 1,[],[],[],[],0,5)
Also, in reecent matlab, you can make it work with the problem-based framework using fcn2optimexpr,
x=optimvar('x','Lower',0,'Upper',5);
GamSquare=fcn2optimexpr(@(z) gamma(z).^2, x);
sol0.x=1;
xoptimal = solve(optimproblem('Objective',GamSquare),sol0).x
Michele Carone
on 22 Nov 2022
Accepted Answer
Matt J
on 25 Sep 2018
Edited: Matt J
on 27 Sep 2018
Your bandwidthcons are not linear, so optimproblem is not applicable here. Since there are only 100 combinations of K and z that satisfy the bounds, you should probably just use exhaustive search.
3 Comments
Walter Roberson
on 26 Sep 2018
gamma() is not defined for datatype optim.problemdef.OptimizationVariable
The defined arithmetic operations for the datatype are:
.\ (ldivide) -- only when the variable is on the right side, nonscalar constant left permitted
- (minus)
\ (mldivide) -- only when the variable is on the right side and left side is scalar
^ (mpower) -- only variable^2
/ (mrdivide) -- only when variable is on left side and right side is scalar
* (mtimes) -- nonscalar left and right permitted and variable^2 terms permitted as long as total degree of any term does not exceed 2
+ (plus)
.^ (power) -- only variable.^2
./ (rdivide) -- only when variable is on left side; right side can be non-scalar
.* (times) -- nonscalar left and right permitted and variable^2 terms permitted as long as total degree of any term does not exceed 2
- (uminus, unary minus)
+ (uplus, unary plus)
More Answers (0)
See Also
Categories
Find more on Surrogate Optimization in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!