Why does lsqcurvefit result in complex parameters?

7 views (last 30 days)
hamp
hamp on 25 Sep 2018
Edited: hamp on 6 Oct 2018
I want to fit experimental impedance data (real(impedance),imag(impedance),frequency).
The written function for getting the parameters has complex formulas for description of the impedance, but real-valued parameters. Unfortunately after the lsqcurvefit I get complex-valued parameters.
(The resnorm2 has a value of apprax 1e-6, which is not so bad.)
I want only real-valued parameters. What can I do to solve this problem?
My question is related to this question: https://ch.mathworks.com/matlabcentral/answers/320390-how-to-avoid-complex-eigenvalues-of-the-matrix-in-its-non-linear-regression-lsqcurvefit (but it was not helpful enough.) I've tried different things but without success till now and would be glad to get a solution from here.
---
In the code file "Fit3_exp.m" I wrote:
% Start Parameters (initial guess)
startPar = [0.45*1e-3, 1.4*1.0846e-7, 0.016*4.111, 0.7*1e-3, 11, 0.00020];
% Make the best fitting
fitPar = lsqcurvefit(@Fit3_f1, startPar, vertcat(f, f), vertcat(real(Z_exp), imag(Z_exp)),[0 0 0 0 0 0],[1e-3 1e6 1e6 1e6 1e6 1e6])
% Vector of fitted Zfit data
zFit3 = Fit3_f1(fitPar, vertcat(f, f));
% Plot Fitted Line
plot(zFit3(1:length(zFit3)/2),-zFit3(1+length(zFit3)/2:end), 'r','DisplayName','computed fitting data')
In the function file "Fit3_f1.m" I wrote:
function Z_fit3 = Fit3_f1(par,f)
file='G:\users\DA\Ueberblick EIS.xlsx';
exp_data_Freq = xlsread(file,'A4','A3:A73');
f = exp_data_Freq(:,1);
f = f(1:length(f)/1); %
w = 2*pi*f ;
R0_fit0 = par(1);
L_fit0 = par(2);
R_bat_fit0 = par(3);
R_ct_fit0 = par(4);
C_dl_fit0 = par(5);
s_w_fit0 = par(6);
L_bat_fit0 = 1i*w*L_fit0;
R_el_fit0 = (L_bat_fit0*R_bat_fit0)./(L_bat_fit0+R_bat_fit0);
Z_d_fit0 = (s_w_fit0 ./ sqrt(w)) * (1-1i);
Z_c_fit0 = -1i ./ (C_dl_fit0*w);
R_dl_fit0 = ((Z_c_fit0 .* (R_ct_fit0 + Z_d_fit0)))./(R_ct_fit0 + Z_d_fit0 + Z_c_fit0);
Z_fit0 = R0_fit0 + R_el_fit0 + R_dl_fit0;
Z_fit3 = vertcat(real(Z_fit0), imag(Z_fit0));
I get now only real-valued Parameters, however the fitting is really poor (resnorm2 = 3.5017e-04).
Are there mistakes in my formulas (e.g. with refering to the correct fit function (with indices) or is something else wrong)?
  5 Comments
hamp
hamp on 3 Oct 2018
It would be nice to find only real-valued parameter solutions. I'm still working on this issue.
Torsten
Torsten on 4 Oct 2018
If you supply real-valued experimental data (real(Z_exp), imag(Z_exp)), return real-valued model data (real(Z_fit0), imag(Z_fit0)) and start with real-valued parameters, the parameters will remain real-valued throughout the fitting process.

Sign in to comment.

Answers (2)

Walter Roberson
Walter Roberson on 27 Sep 2018
It is because you are ignoring the second input parameter.
Note: for efficiency, do not read files in the objective function. Read the files beforehand and pass them into the objective function by creating an anonymous function that refers to them.
  2 Comments
hamp
hamp on 27 Sep 2018
Thank you Walter for your input. I'm a beginner. Could you show me how the codes should look like?
Walter Roberson
Walter Roberson on 3 Oct 2018
I do not have your data to test with so I created some random data and changed to code to work with the complex values directly. The results I got back were real-valued for fitPar.
fit4_driver.m:
file='G:\users\DA\Ueberblick EIS.xlsx';
%f = xlsread(file,'A4','A3:A73');
f = rand(71,1);
%realpart = xlsread(file,'TS40','B3:B73');
%imagpart = xlsread(file,'TS40','C3:C73');
realpart = rand(71,1);
imagpart = randn(71,1);
Z_exp = complex(realpart, imagpart);
% Start Parameters (initial guess)
startPar = [0.45*1e-3, 1.4*1.0846e-7, 0.016*4.111, 0.7*1e-3, 11, 0.00020];
% Make the best fitting
fitPar = lsqcurvefit(@Fit4_f1, startPar, f, Z_exp, [0 0 0 0 0 0], [1e-3 1e6 1e6 1e6 1e6 1e6]);
% Vector of fitted Zfit data
zFit4 = Fit4_f1(fitPar, f);
% Plot Fitted Line
plot(real(zFit4),-imag(zFit4), 'r','DisplayName','computed fitting data')
Fit4_f1.m:
function Z_fit0 = Fit4_f1(par,f)
f = f(1:length(f)/1); %
w = 2*pi*f ;
R0_fit0 = par(1);
L_fit0 = par(2);
R_bat_fit0 = par(3);
R_ct_fit0 = par(4);
C_dl_fit0 = par(5);
s_w_fit0 = par(6);
L_bat_fit0 = 1i*w*L_fit0;
R_el_fit0 = (L_bat_fit0*R_bat_fit0)./(L_bat_fit0+R_bat_fit0);
Z_d_fit0 = (s_w_fit0 ./ sqrt(w)) * (1-1i);
Z_c_fit0 = -1i ./ (C_dl_fit0*w);
R_dl_fit0 = ((Z_c_fit0 .* (R_ct_fit0 + Z_d_fit0)))./(R_ct_fit0 + Z_d_fit0 + Z_c_fit0);
Z_fit0 = R0_fit0 + R_el_fit0 + R_dl_fit0;
%Z_fit4 = vertcat(real(Z_fit0), imag(Z_fit0));
end

Sign in to comment.


hamp
hamp on 3 Oct 2018
I asked my colleague and was able to rewrite the code as shown below:
file='G:\users\DA\Ueberblick EIS.xlsx';
f = xlsread(file,'A4','A3:A73');
realpart = xlsread(file,'TS40','B3:B73');
imagpart = xlsread(file,'TS40','C3:C73');
Z_exp=realpart+i*imagpart;
realpart=real(Z_exp);
imagpart=imag(Z_exp);
% Start Parameters (initial guess)
startPar = [0.45*1e-3, 1.4*1.0846e-7, 0.016*4.111, 0.7*1e-3, 11, 0.00020];
% Make the best fitting
fitPar = lsqcurvefit(@Fit4_f1, startPar, vertcat(f, f), vertcat(real(Z_exp), imag(Z_exp)),[0 0 0 0 0 0],[1e-3 1e6 1e6 1e6 1e6 1e6])
% Vector of fitted Zfit data
zFit4 = Fit4_f1(fitPar, vertcat(f, f));
% Plot Fitted Line
plot(zFit4(1:length(zFit4)/2),-zFit4(1+length(zFit4)/2:end), 'r','DisplayName','computed fitting data')
function Z_fit4 = Fit4_f1(par,f)
f = f(1:length(f)/1); %
w = 2*pi*f ;
R0_fit0 = par(1);
L_fit0 = par(2);
R_bat_fit0 = par(3);
R_ct_fit0 = par(4);
C_dl_fit0 = par(5);
s_w_fit0 = par(6);
L_bat_fit0 = 1i*w*L_fit0;
R_el_fit0 = (L_bat_fit0*R_bat_fit0)./(L_bat_fit0+R_bat_fit0);
Z_d_fit0 = (s_w_fit0 ./ sqrt(w)) * (1-1i);
Z_c_fit0 = -1i ./ (C_dl_fit0*w);
R_dl_fit0 = ((Z_c_fit0 .* (R_ct_fit0 + Z_d_fit0)))./(R_ct_fit0 + Z_d_fit0 + Z_c_fit0);
Z_fit0 = R0_fit0 + R_el_fit0 + R_dl_fit0;
Z_fit4 = vertcat(real(Z_fit0), imag(Z_fit0));
end
I get following error code:
Error using lsqcurvefit (line 251)
Function value and YDATA sizes are not equal.
Error in Fit4_exp (line 12)
fitPar = lsqcurvefit(@Fit4_f1, startPar, vertcat(f, f), vertcat(real(Z_exp), imag(Z_exp)),[0 0 0 0 0 0],[1e-3 1e6 1e6 1e6 1e6 1e6])
length(f) = length(realpart) = length(imagpart) = 71. The dimensions of the Input values are the same.
What could I do to solve this issue?
  4 Comments
Walter Roberson
Walter Roberson on 4 Oct 2018
function Z_fit4 = Fit4_f1(something)
means that the function name is Fit4_f1 and that whenever it is invoked, the value to be returned is whatever has been assigned to the variable Z_fit4. lsqcurvefit requires that the output be the same size as the input. Your current code is calculating an temporary variable Z_fit0 that is the right size, but splits it into real and imaginary parts and so is returning twice as much data as expected.
The current code is also not taking into account that half of the input corresponds to imaginary parts.
hamp
hamp on 6 Oct 2018
Edited: hamp on 6 Oct 2018
Thank you for your hints. I propose following code, which does result in real-valued parameters. What do you think about?:
clear
clc
close all
Z_real_exp = [3.1300e-03; 2.6849e-03; 2.2763e-03; 1.8945e-03; 1.6301e-03; 1.3839e-03; 1.1961e-03; 9.8979e-04; 8.4209e-04; 7.1154e-04; 6.2088e-04; 5.5614e-04; 5.0313e-04; 4.7850e-04; 4.6345e-04; 4.5015e-04; 4.5227e-04; 4.5836e-04; 4.6635e-04; 4.8297e-04; 4.9927e-04; 5.1492e-04; 5.5454e-04; 5.9414e-04; 6.4342e-04; 6.9217e-04; 7.4891e-04; 8.0603e-04; 8.6047e-04; 9.1073e-04; 9.5977e-04; 1.0020e-03; 1.0359e-03; 1.0676e-03; 1.0923e-03; 1.1135e-03; 1.1370e-03; 1.1582e-03; 1.1721e-03; 1.1896e-03; 1.2032e-03; 1.2162e-03; 1.2329e-03; 1.2466e-03; 1.2607e-03; 1.2782e-03; 1.2936e-03; 1.3068e-03; 1.3318e-03; 1.3512e-03; 1.3712e-03; 1.3991e-03; 1.4272e-03; 1.4509e-03; 1.4944e-03; 1.5179e-03; 1.5632e-03; 1.6116e-03; 1.6520e-03; 1.7130e-03; 1.7745e-03; 1.8599e-03; 1.9418e-03; 2.0433e-03; 2.1558e-03; 2.2881e-03; 2.4454e-03; 2.5902e-03; 2.7751e-03; 2.9336e-03; 3.1337e-03];
Z_imag_exp = [-9.3804e-03; -7.7476e-03; -6.5142e-03; -5.3852e-03; -4.5069e-03; -3.7248e-03; -3.0986e-03; -2.5774e-03; -2.1278e-03; -1.7242e-03; -1.4018e-03; -1.1185e-03; -8.7643e-04; -6.9883e-04; -5.3282e-04; -3.8933e-04; -2.8018e-04; -1.8635e-04; -1.0688e-04; -3.7385e-05; 2.5667e-05; 7.7504e-05; 1.2548e-04; 1.7315e-04; 2.1478e-04; 2.4122e-04; 2.5791e-04; 2.6966e-04; 2.6735e-04; 2.5769e-04; 2.4846e-04; 2.3032e-04; 2.1241e-04; 1.9829e-04; 1.8456e-04; 1.6861e-04; 1.5832e-04; 1.5061e-04; 1.3993e-04; 1.3550e-04; 1.3094e-04; 1.2622e-04; 1.3010e-04; 1.3582e-04; 1.4180e-04; 1.4279e-04; 1.4525e-04; 1.5980e-04; 1.6961e-04; 1.8627e-04; 2.0286e-04; 2.2284e-04; 2.4247e-04; 2.7393e-04; 3.0023e-04; 3.3634e-04; 3.7935e-04; 4.2925e-04; 4.8946e-04; 5.5468e-04; 6.2873e-04; 7.2369e-04; 8.1695e-04; 9.3529e-04; 1.0378e-03; 1.1885e-03; 1.3078e-03; 1.4658e-03; 1.6081e-03; 1.7949e-03; 2.0005e-03];
Z_exp=Z_real_exp-1i*Z_imag_exp;
f=transpose(logspace(4,-3,71));
inputvariablevertcat = vertcat (f,f);
inputdatavertcat = vertcat(Z_real_exp,Z_imag_exp);
startPar = [0.45*1e-3, 1.4*1.0846e-7, 0.016*4.111, 0.7*1e-3, 11, 0.00020];
LB = [0, 0, 0, 0, 0, 0];
UB = [100, 100, 100, 100, 100, 100];
[fitPar,resnorm2,residual2,exitflag2,output2] = lsqcurvefit(@parestimation,startPar,inputvariablevertcat,inputdatavertcat,LB,UB)
fitPar
function fitfunction = parestimation(par,inputvariablevertcat)
w = 2*pi*inputvariablevertcat ;
R0_fit0 = par(1);
L_fit0 = par(2);
R_bat_fit0 = par(3);
R_ct_fit0 = par(4);
C_dl_fit0 = par(5);
s_w_fit0 = par(6);
L_bat_fit0 = 1i*w*L_fit0;
R_el_fit0 = (L_bat_fit0*R_bat_fit0)./(L_bat_fit0+R_bat_fit0);
Z_d_fit0 = (s_w_fit0 ./ sqrt(w)) * (1-1i);
Z_c_fit0 = -1i ./ (C_dl_fit0*w);
R_dl_fit0 = ((Z_c_fit0 .* (R_ct_fit0 + Z_d_fit0)))./(R_ct_fit0 + Z_d_fit0 + Z_c_fit0);
Z_fit0 = R0_fit0 + R_el_fit0 + R_dl_fit0;
firsthalf = Z_fit0(1:(length(Z_fit0)/2));
secondhalf = Z_fit0((length(Z_fit0)/2+1):length(Z_fit0));
fitfunction = vertcat(real(firsthalf),imag(secondhalf));
end

Sign in to comment.

Categories

Find more on Get Started with Curve Fitting Toolbox in Help Center and File Exchange

Products


Release

R2017a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!