hi! i m trying to create a 3-d solid volume graph using viewsolid.but when i m using viewsolid or viewsolidone its showing a error that variable is not defined.viewsolid i think is a function....can anyone help me in this matter?

436 views (last 30 days)
clc clear all syms x y z int(int(x^2+2*(y^2),x,0,2),y,0,2) viewSolid(z,0+0*x+0*y,x^2+2*(y^2),x,0,2,y,0,2)
error: ans =
16
Undefined function or variable 'viewSolid'.
Error in MatlabDA2 (line 5) viewSolid(z,0+0*x+0*y,x^2+2*(y^2),x,0,2,y,0,2)

Answers (5)

Basil C.
Basil C. on 28 Sep 2018
Edited: DGM on 4 Nov 2024 at 6:05
Just create another file with the following code in the same directory having the name viewSolid.m
function viewSolid(zvar, F, G, yvar, f, g, xvar, a, b)
%VIEWSOLID is a version for MATLAB of the routine on page 161
% of "Multivariable Calculus and Mathematica" for viewing the region
% bounded by two surfaces for the purpose of setting up triple integrals.
% The arguments are entered from the inside out.
% There are two forms of the command --- either f, g,
% F, and G can be vectorized functions, or else they can
% be symbolic expressions. xvar, yvar, and zvar can be
% either symbolic variables or strings.
% The variable xvar (x, for example) is on the
% OUTSIDE of the triple integral, and goes between CONSTANT limits a and b.
% The variable yvar goes in the MIDDLE of the triple integral, and goes
% between limits which must be expressions in one variable [xvar].
% The variable zvar goes in the INSIDE of the triple integral, and goes
% between limits which must be expressions in two
% variables [xvar and yvar]. The lower surface is plotted in red, the
% upper one in blue, and the "hatching" in cyan.
%
% Examples: viewSolid(z, 0, (x+y)/4, y, x/2, x, x, 1, 2)
% gives the picture on page 163 of "Multivariable Calculus and Mathematica"
% and the picture on page 164 of "Multivariable Calculus and Mathematica"
% can be produced by
% viewSolid(z, x^2+3*y^2, 4-y^2, y, -sqrt(4-x^2)/2, sqrt(4-x^2)/2, ...
% x, -2, 2,)
% One can also type viewSolid('z', @(x,y) 0, ...
% @(x,y)(x+y)/4, 'y', @(x) x/2, @(x) x, 'x', 1, 2)
%
if isa(f, 'sym') % case of symbolic input
ffun=inline(vectorize(f+0*xvar),char(xvar));
gfun=inline(vectorize(g+0*xvar),char(xvar));
Ffun=inline(vectorize(F+0*xvar),char(xvar),char(yvar));
Gfun=inline(vectorize(G+0*xvar),char(xvar),char(yvar));
oldviewSolid(char(xvar), double(a), double(b), ...
char(yvar), ffun, gfun, char(zvar), Ffun, Gfun)
else
oldviewSolid(char(xvar), double(a), double(b), ...
char(yvar), f, g, char(zvar), F, G)
end
%%%%%%% subfunction goes here %%%%%%
function oldviewSolid(xvar, a, b, yvar, f, g, zvar, F, G)
for counter=0:20
xx = a + (counter/20)*(b-a);
YY = f(xx)*ones(1, 21)+((g(xx)-f(xx))/20)*(0:20);
XX = xx*ones(1, 21);
%% The next lines inserted to make bounding curves thicker.
widthpar=0.5;
if counter==0, widthpar=2; end
if counter==20, widthpar=2; end
%% Plot curves of constant x on surface patches.
plot3(XX, YY, F(XX, YY).*ones(1,21), 'r', 'LineWidth', widthpar);
hold on
plot3(XX, YY, G(XX, YY).*ones(1,21), 'b', 'LineWidth', widthpar);
end;
%% Now do the same thing in the other direction.
XX = a*ones(1, 21)+((b-a)/20)*(0:20);
%% Normalize sizes of vectors.
YY=0:2; ZZ1=0:20; ZZ2=0:20;
for counter=0:20,
%% The next lines inserted to make bounding curves thicker.
widthpar=0.5;
if counter==0, widthpar=2; end
if counter==20, widthpar=2; end
for i=1:21,
YY(i)=f(XX(i))+(counter/20)*(g(XX(i))-f(XX(i)));
ZZ1(i)=F(XX(i),YY(i));
ZZ2(i)=G(XX(i),YY(i));
end;
plot3(XX, YY, ZZ1, 'r', 'LineWidth',widthpar);
plot3(XX, YY, ZZ2, 'b', 'LineWidth',widthpar);
end;
%% Now plot vertical lines.
for u = 0:0.2:1,
for v = 0:0.2:1,
x=a + (b-a)*u; y = f(a + (b-a)*u) +(g(a + (b-a)*u)-f(a + (b-a)*u))*v;
plot3([x, x], [y, y], [F(x,y), G(x, y)], 'c');
end;
end;
xlabel(xvar)
ylabel(yvar)
zlabel(zvar)
hold off

Walter Roberson
Walter Roberson on 11 Oct 2018
Edited: Walter Roberson on 27 Dec 2021

SHREYAS KARTHIKEYA
SHREYAS KARTHIKEYA on 23 Nov 2020
Edited: DGM on 16 Nov 2024 at 18:17
change that code as
viewSolid(z,0+0*x+0*y,x^2+2*(y^2),x,0+0*y,2+0*y,y,0+0*x,2+0*x)
now you will get the answer
it will integrate only if x and y variables are present in the integration that is only the error.

Tanmay
Tanmay on 8 Dec 2022
Edited: Walter Roberson on 27 Jan 2023
function viewSolidone(zvar, F, G, xvar, f, g, yvar, a, b)
%VIEWSOLID is a version for MATLAB of the routine on page 161
% of "Multivariable Calculus and Mathematica" for viewing the region
% bounded by two surfaces for the purpose of setting up triple integrals.
% The arguments are entered from the inside out.
% There are two forms of the command --- either f, g,
% F, and G can be vectorized functions, or else they can
% be symbolic expressions. xvar, yvar, and zvar can be
% either symbolic variables or strings.
% The variable xvar (x, for example) is on the
% OUTSIDE of the triple integral, and goes between CONSTANT limits a and b.
% The variable yvar goes in the MIDDLE of the triple integral, and goes
% between limits which must be expressions in one variable [xvar].
% The variable zvar goes in the INSIDE of the triple integral, and goes
% between limits which must be expressions in two
% variables [xvar and yvar]. The lower surface is plotted in red, the
% upper one in blue, and the "hatching" in cyan.
%
% Examples: viewSolid(z, 0, (x+y)/4, y, x/2, x, x, 1, 2)
% gives the picture on page 163 of "Multivariable Calculus and Mathematica"
% and the picture on page 164 of "Multivariable Calculus and Mathematica"
% can be produced by
% viewSolid(z, x^2+3*y^2, 4-y^2, y, -sqrt(4-x^2)/2, sqrt(4-x^2)/2, ...
% x, -2, 2,)
% One can also type viewSolid('z', @(x,y) 0, ...
% @(x,y)(x+y)/4, 'y', @(x) x/2, @(x) x, 'x', 1, 2)
%
if isa(f, 'sym') % case of symbolic input
ffun=inline(vectorize(f+0*yvar),char(yvar));
gfun=inline(vectorize(g+0*yvar),char(yvar));
Ffun=inline(vectorize(F+0*xvar),char(xvar),char(yvar));
Gfun=inline(vectorize(G+0*xvar),char(xvar),char(yvar));
oldviewSolid(char(yvar),double(a), double(b), ...
char(xvar), ffun, gfun, char(zvar), Ffun, Gfun)
else
oldviewSolid(char(yvar),double(a),double(b),char(xvar), f, g, char(zvar), F, G)
end
%%%%%%% subfunction goes here %%%%%%
function oldviewSolid(yvar,a , b, xvar, f, g, zvar, F, G)
for counter=0:30
yy= a + (counter/30)*(b-a);
XX = f(yy)*ones(1, 31)+((g(yy)-f(yy))/30)*(0:30);
YY = yy*ones(1, 31);
%% The next lines inserted to make bounding curves thicker.
widthpar=0.5;
if counter==0, widthpar=2; end
if counter==20, widthpar=2; end
%% Plot curves of constant x on surface patches.
plot3(YY,XX, F(XX, YY).*ones(1,31), 'r', 'LineWidth', widthpar);
hold on
plot3(YY,XX, G(XX, YY).*ones(1,31), 'b', 'LineWidth', widthpar);
end;
%% Now do the same thing in the other direction.
YY = a*ones(1, 31)+((b-a)/30)*(0:30);
%% Normalize sizes of vectors.
XX=0:2; ZZ1=0:30; ZZ2=0:30;
for counter=0:30,
%% The next lines inserted to make bounding curves thicker.
widthpar=0.5;
if counter==0, widthpar=2; end
if counter==30, widthpar=2; end
for i=1:31,
XX(i)=f(YY(i))+(counter/30)*(g(YY(i))-f(YY(i)));
ZZ1(i)=F(YY(i),XX(i));
ZZ2(i)=G(YY(i),XX(i));
end;
plot3(YY,XX, ZZ1, 'r', 'LineWidth',widthpar);
plot3(YY,XX, ZZ2, 'g', 'LineWidth',widthpar);
end;
%% Now plot vertical lines.
for u = 0:0.09:1,
for v = 0:0.09:1,
y=a + (b-a)*u; x = f(a + (b-a)*u) +(g(a + (b-a)*u)-f(a + (b-a)*u))*v;
plot3([y, y], [x, x], [F(x,y), G(x, y)], 'c');
end;
end;
xlabel(xvar)
ylabel(yvar)
zlabel(zvar)
hold off

deepak
deepak on 26 Jan 2023
Unrecognized function or variable 'viewSoliddone'.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!