using linear observer on a nonlinear model

5 views (last 30 days)
liam
liam on 2 May 2019
I'm trying to use a linear luenberger observer
to approximate the motion of an inverted pendulum on a cart grpahically with ODE45:
With states θ and and controller baed on the estimated states: . The controller was designed from linearisation about , . The dynamics of my true state and estimated state should converge when the released from an initial displacement near π but this isn't happening. The code is:
A=[0 1; 1 0];
B=[0; 1];
C=[1 0];
T0=pi+0.1; %The initial angle of displacement
s1=[-1,-2]; %poles for the true dynamics
s2=[-2,-4]; %poles for the observer
K=place(A,B,s1)
L=place(A',C',s2)'
f= @(t,x) [x(2); -sin(x(1))+[K(1,1)*(x(3)-pi)+K(1,2)*x(4)]*cos(x(1))
;L(1,1)*(x(1)-pi)-L(1,1)*(x(3)-pi)+x(4);
L(2,1)*(x(1)-pi)+(1-L(2,1)-K(1,1))*(x(3)-pi)-K(1,2)*x(4)];
[t,x]= ode45(f,[0 20],[T0 0 0 0]);
plot(t,x(:,1),t,x(:,3),'--')
Where x(1) is θ, x(2) is , x(3) is and x(4) is . The ODE45 was obatined from:
$\begin{bmatrix} \dot{x} \\ \dot{\hat{x}} \end{bmatrix} = \begin{bmatrix} A & -BK \\ LC & A-LC-BK \end{bmatrix} \begin{bmatrix} x \\ \hat{x} \end{bmatrix}$

Answers (0)

Categories

Find more on Linearization in Help Center and File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!