permutations of a matrix
12 views (last 30 days)
Show older comments
Hello,
for a linear system equation of Ax = B with A dimensions 5x5 and x, a column vector. Let's say A is a binary matrix of 1's and 0's and i had the cases of having 3 1's and the rest 0's in A, or 5 1's and the rest 0's. How would I calculate the values of B for all combinations of A consisting of 3 or 5 1's?
2 Comments
David Hill
on 23 Aug 2019
% broot-force for 3 1's if I understood you correctly.
x=[1 0 1 0 1]';% any column vector
y=nan(5,1,2300);
z=zeros(5);
count=0;
for i=1:25
z(i)=1;
for j=i+1:25
z(j)=1;
for k=j+1:25
z(k)=1;
count=count+1;
y(:,1,count)=z*x;
z(k)=0;
end
z(j)=0;
end
z(i)=0;
end
Stephen23
on 23 Aug 2019
There are also answers on this forum that discuss how you could generalize that concept, so that it does not use a fixed number of nested for loops:
Accepted Answer
Stephen23
on 23 Aug 2019
Edited: Stephen23
on 23 Aug 2019
Based on this efficient concept for generating a matrix of binary combinations:
you can efficiently create a matrix of the required combinations, by incrementally adding to a matrix and removing the superfluous rows at each loop iteration, thus avoiding any out-of-memory issues (as would happen if you tried to generate all combinations at once).
s = 3; % how many 1's in matrix.
x = [1;2;3;4;5]; % your column vector.
Generate matrix of all combinations:
n = numel(x); % matrix has size n*n
m = [0;1]; % seed matrix.
for k = 2:n*n
r = size(m,1);
m = [zeros(r,1),m;ones(r,1),m];
m(sum(m,2)>s,:) = []; % remove rows where sum > s
end
m(sum(m,2)~=s,:) = []; % remove rows where sum ~= s
For s=3 I get 2300 rows (i.e. each row is a unique combination), and for s=5 I get 53130 rows. You can easily check that each row sums to s (i.e. 3 or 5):
>> all(sum(m,2)==3)
ans = 1
and that the rows are unique:
>> size(unique(m,'rows'),1)==size(m,1)
ans = 1
Then you can simply loop over those rows, reshape each row into a matrix, and do whatever operations you want:
r = size(m,1);
B = cell(r,1); % preallocate!
for k = 1:r
A = reshape(m(k,:),n,n);
B{k} = A*x; % whatever operations you want...
end
The first few outputs are:
>> B{1:3}
ans =
0
0
5
5
5
ans =
0
5
0
5
5
ans =
0
5
5
0
5
Do this once for s=3, and once for s=5.
More Answers (1)
Bruno Luong
on 23 Aug 2019
Edited: Bruno Luong
on 23 Aug 2019
x = (1:5)';
n = size(x,1);
m = 5; % size of b
s = 3; % target sum(A(:))
[i,k] = ind2sub([m,n],nchoosek(1:m*n,s));
j = repmat((1:size(i,1))',s,1);
% each column of B is a possible vector of the set
% { b=A*x: A (m x n) binary matrix such that sum(A(:))=s }
B = accumarray([i(:) j], x(k(:)));
See Also
Categories
Find more on Particle Swarm in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!