Please help me to using genetic algorithm

1 view (last 30 days)
S AsZ
S AsZ on 20 Oct 2019
Edited: S AsZ on 29 Nov 2019
I write this code but I want to solve this problem with 'ga' not with 'intlinprog' solver!
Can anyone guide me?
costprob = optimproblem;
% Indices
k = 15;
j = 2;
f = 10;
l = 5;
r0 = 6;
r = 6;
% Parameters
cr0 = 0 + 1*rand(1,r0);
dr0f = 0 + 1*rand(r0,f);
csl = 0 + 1*rand(1,l);
DE = 200 + 100*rand(1,1);
csur0f = 2000 + 1000*rand(r0,f);
ctl = 1000 + 1000*rand(1,l);
cvl = 10 + 10*rand(1,l);
cpjk = 0 + 1*rand(j,k);
corj = 0 + 1*rand(r,j);
pr0f = 0 + 1*rand(r0,f);
vjk = 0 + 1*rand(j,k);
cvjrk = 0 + 1*rand(j,r,k);
M = 10000000000000;
% Variables
xl = optimvar('xl',1,l,'LowerBound',0);
yr0f = optimvar('yr0f',r0,f,'Type','integer','LowerBound',0,'UpperBound',1);
xx1r0f = optimvar('xx1r0f',r0,f,'LowerBound',0);
xx2r0f = optimvar('xx2r0f',r0,f,'LowerBound',0);
yjk1 = optimvar('yjk1',j,k,'Type','integer','LowerBound',0,'UpperBound',1);
yl2 = optimvar('yl2',1,l,'Type','integer','LowerBound',0,'UpperBound',1);
zjkr = optimvar('zjkr',j,k,r,'LowerBound',0);
wrj = optimvar('wrj',r,j,'LowerBound',0);
% Objective function
objfun1 = sum(sum(dr0f.*xx1r0f,2).*cr0',1);
objfun2 = sum(sum(corj.*wrj,2),1);
objfun3 = sum(sum(pr0f.*xx1r0f,2),1);
objfun4 = sum(sum(cpjk.*yjk1,2),1);
objfun5 = sum(csl.*xl,2);
costprob.Objective = objfun1 + objfun2 + objfun3 + objfun4 + objfun5;
% Constraints
cons1 = sum(xl,2) >= DE;
cons2 = sum(xl,2)*ones(j,1,r) == sum(zjkr,2);
cons3 = xx1r0f <= csur0f.*yr0f;
cons4 = xl <= ctl.*yl2;
cons5 = xl >= cvl.*yl2;
cons6 = sum(yjk1,2) == ones(j,1);
cons7 = squeeze(sum(zjkr,3)) <= M*yjk1;
cons8 = (1-dr0f).*xx1r0f == xx2r0f;
costprob.Constraints.cons1 = cons1;
costprob.Constraints.cons2 = cons2;
costprob.Constraints.cons3 = cons3;
costprob.Constraints.cons4 = cons4;
costprob.Constraints.cons5 = cons5;
costprob.Constraints.cons6 = cons6;
costprob.Constraints.cons7 = cons7;
costprob.Constraints.cons8 = cons8;
  2 Comments
Stephan
Stephan on 20 Oct 2019
please post code not pictures of code
S AsZ
S AsZ on 21 Oct 2019
Can anyone help me?
How can I solve this problem with Genetic Algorithm?

Sign in to comment.

Accepted Answer

Matt J
Matt J on 21 Oct 2019
Edited: Matt J on 21 Oct 2019
You can use prob2struct to obtain most of your problem parameters in solver form,
problem=prob2struct(costprob);
problem=rmfield(problem,'solver');
problem.nvars=numel(problem.lb);
problem.fitnessfcn=@(x) dot(problem.f,x);
x=ga(problem);
However your problem, as currently formulated, has both integer and equality constraints, which ga cannot handle. See here, for guidelines on how to rewrite the problem without equality constraints:
  5 Comments
S AsZ
S AsZ on 29 Nov 2019
Excuse me
I want to add this constraint to my model but I don't know how can I write the code of this constraint.
Can you help me please? ?
k = 15;
j = 2;
r = 6;
rprim = r;
vjk = 1 + 3*rand(j,k);
ujrrprim = 1 + 10*rand(j,r,rprim);
zjkr = optimvar('zjkr',j,k,r,'LowerBound',0);
I mean rprim is r'.
S AsZ
S AsZ on 29 Nov 2019
Edited: S AsZ on 29 Nov 2019
Excuse me so much I have an author question again:
How can I write multi objective functions with optimproblem format? My mean is using problem based method not using solver based method.
????????

Sign in to comment.

More Answers (0)

Products


Release

R2019b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!