Solving an integro-differential equation
3 views (last 30 days)
Show older comments
Hello, I'm trying to solve the following differential equation that also has an integral.
I am trying to solve for L (output) with initial conditions of h0=0 and h'=0. The h is with respect to time. r, U and B are constants. The integral part of the equation is equated to A for Matlab coding. So far I have:
syms B h(t) L r U h0 Y
A = @(t,U,B) integral(@(t) exp((-U*t/B)*0.1843)*h, 0, t);
Eqn = diff(h) == (L/((-1.8775)*U*r*B))+(-0.1654)*U*h/B-...
((0.0466*U^2)/(B^2))*A(t,U,B);
hsol = dsolve(Eqn, h(0)==h0);
Lsol = solve(hsol,L);
Lsol = simplify(Lsol, 'Steps',500);
Lfcn = matlabFunction(Lsol);
Eqn normally works if I have A as constant. However, when I have it as the definite integral, Matlab wants me to have h as an input argument. How can I have Lfcn as having only r, U, B, h0, t as inpute arguments? Thank you.
0 Comments
Answers (0)
See Also
Categories
Find more on Symbolic Math Toolbox in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!