Diagonal matrices with spdiags
20 views (last 30 days)
Show older comments
I'm working on a numerical solution to an equation and as part of this I have to solve a matrix solution. The system of equations in a tridiagonal matrix I have been informed that there is a routine called spdiags which allows me access to specialised solution/inversing routines which should speed up my code.
The code I use is:
s=0.12;
N_r=30;
r=linspace(0,1,N_r)';
dr=r(2);
r_plus=r+0.5*dr;
r_minus=r-0.5*dr;
a_plus=s*r_plus(1:end-1).^2;
a_minus=s*r_minus(1:end-1).^2;
a=-(r.^2+s*(r_plus.^2+r_minus.^2));
A=diag(a_plus,1)+diag(a)+diag(a_minus,-1);
A(1,1)=-1;A(1,2)=1;
A(N_r,N_r-1)=s*(r_plus(N_r)^2+r_minus(N_r)^2);
This provides the matrix that I want. I can run the code and it's pretty fast but I want to see that if I define the A matrix as a spdiags matrix:
B_plus=s*r_plus.^2;
B_minus=s*r_minus.^2;
B=spdiags([B_minus a B_plus],-1:1,N_r,N_r);
B(1,1)=-1;B(1,2)=1;
B(N_r,N_r-1)=s*(r_plus(N_r)^2+r_minus(N_r)^2);
Now hopefully, these should yield the same matrix, but they don't. What am I doing wrong?
0 Comments
Accepted Answer
Matt J
on 25 Oct 2019
Edited: Matt J
on 25 Oct 2019
s=0.12;
N_r=30;
r=linspace(0,1,N_r)';
dr=r(2);
r_plus=r+0.5*dr;
r_minus=r-0.5*dr;
a_plus=s*r_plus(1:end-1).^2;
a_minus=s*r_minus(1:end-1).^2;
a=-(r.^2+s*(r_plus.^2+r_minus.^2));
D=[[a_minus(:);0], a(:), [0;a_plus(:)]]; %<---changed
B=spdiags(D,-1:1,N_r,N_r); %<--changed
B(1,1)=-1;B(1,2)=1;
B(N_r,N_r-1)=s*(r_plus(N_r)^2+r_minus(N_r)^2);
More Answers (0)
See Also
Categories
Find more on Operating on Diagonal Matrices in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!