Help with a double series?

13 views (last 30 days)
DIANA CARTLON
DIANA CARTLON on 28 Nov 2019
Commented: Walter Roberson on 18 Apr 2021
I am trying to write function for the equation, can someone tell me what i am doing wrong
clear,clc
a=input('Please enter the dimension, a\n');
b=input('Please enter the dimension, b\n');
h=input('Please enter the thickness, h\n');
E=input('Please enter the Modulus of Eleasticity, E\n');
v=input('Please enter the Poisson Ratio, v\n');
P=input('Please enter the Load, P\n');
xo=input('Please enter the Position, xo\n');
yo=input('Please enter the Position, yo\n');
rec_plate_pt(a,b,P,xo,yo,x,y);
D=(E*h^3)/(12*(1-v^2))
c=(4*P)/(pi^4*a*b*D)
function w = rec_plate_pt(a,b,P,xo,yo,x,y)
s=0;
for m=1:Inf
for n=1:Inf
s=c*(sin((m*pi*xo)/a)*sin((n*pi*yo)/b)/((m^2/a^2+n^2/b^2).^2)*(sin((m*pi*x)/a))*(sin(n*pi*y)/b))
format long
fprintf('%d',w);
end
end
end
  1 Comment
Walter Roberson
Walter Roberson on 28 Nov 2019
Those are infinite series. You should use symsum()

Sign in to comment.

Answers (2)

Jyothis Gireesh
Jyothis Gireesh on 30 Dec 2019
As Walter mentioned in the previous comment the double summation may be implemented using a combination of symbolic variables and the symsum()” in MATLAB instead of defining a function.
One possible implementation is given below
syms Wc(x,y) m n;
Wc(x,y) = c*symsum(symsum(sin(m*pi*x0/a)*sin(n*pi*y0/b)*sin(m*pi*x/a)*sin(n*pi*y/b)/(m^2/a^2 + n^2/b^2)^2,n,1,Inf),m,1,Inf);

Johannes Ebert
Johannes Ebert on 18 Apr 2021
Hello together,
I have a question: if I apply the code above with my parameter set, the result is the following:
My Input: Wc(120,200)
The result:
(7312256873090709*symsum(symsum(((exp(-(pi*n*10i)/31)*1i)/2 - (exp((pi*n*10i)/31)*1i)/2)^2/(m^2/722500 + n^2/384400)^2, n, 1, Inf)*((exp(-(pi*m*12i)/85)*1i)/2 - (exp((pi*m*12i)/85)*1i)/2)^2, m, 1, Inf))/39614081257132168796771975168
Is there a chance to get the concret value for the used parameter set?
Thanks und kind regards,
Johannes
  3 Comments
Walter Roberson
Walter Roberson on 18 Apr 2021
Edited: Walter Roberson on 18 Apr 2021
Hmmm, this does not seem to help.
syms m n integer
part1 = ((exp(-(pi*m*12i)/85)*1i)/2 - (exp((pi*m*12i)/85)*1i)/2)^2;
part2 = symsum(((exp(-(pi*n*10i)/31)*1i)/2 - (exp((pi*n*10i)/31)*1i)/2)^2/(m^2/722500 + n^2/384400)^2, n, 1, Inf)
part2 = 
part2 = simplify(rewrite(part2, 'sin'), 'steps', 50)
part2 = 
part3 = symsum( part2 .* part1, m, 1, Inf)
part3 = 
part3 = simplify(rewrite(part3, 'sin'), 'steps', 50)
part3 = 
Wc = (sym('7312256873090709') .* part3)/sym('39614081257132168796771975168')
Wc = 
Walter Roberson
Walter Roberson on 18 Apr 2021
Maple is able to find an explicit formula for part2 (that is, the inner symsum() ) in terms of a fair number of psi() calls and some trig terms. But it struggles to find anything definite further than that or to simplify the mess.

Sign in to comment.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!