creating a transfer function from a determinant
5 views (last 30 days)
Show older comments
Michael Gibson
on 2 Dec 2019
Commented: Michael Gibson
on 2 Dec 2019
Hey Guys,
So I'm trying to create a transfer function in matlab using the determinants and state space equations via linear algebra. The thing is I can manually pull the coefficients out of the results and plug them into the tf command, but I have to fiddle with the input numbers to get the desired result, so I'd rather not have to manually plug that in every time. Any suggestions?
syms s
m = 5;
k = 10;
b = 50;
m_c = 0.1*m;
k_c = k;
b_c = b;
R_wc = 10;
T_c = 10;
H = (b_c*R_wc)/(b_c*R_wc+T_c^2);
V_1 = det([-(H*T_c^2-b)/R_wc -k -H*T_c^2/(m_c*R_wc) -H*k_c*T_c^2/(b_c*R_wc); ...
1 s 0 0; ...
-H*T_c^2/R_wc 0 s-H*T_c^2/(m_c*R_wc) -H*k_c*T_c^2/(b_c*R_wc); ...
-H*T_c^2/(b_c*R_wc) 0 -H*T_c^2/(m_c*b_c*R_wc) s-(k_c*H*T_c^2-H*R_wc)/(b_c^2*R_wc)]);
V_2 = det([H*T_c/R_wc -k -H*T_c^2/(m_c*R_wc) -H*k_c*T_c^2/(b_c*R_wc); ...
0 s 0 0; ...
H*T_c/R_wc 0 s-H*T_c^2/(m_c*R_wc) -H*k_c*T_c^2/(b_c*R_wc); ...
H*T_c/(b_c*R_wc) 0 -H*T_c^2/(m_c*b_c*R_wc) s-(k_c*H*T_c^2-H*R_wc)/(b_c^2*R_wc)]);
den = det([s-(H*T_c^2-b*R_wc)/(m*R_wc) -k -H*T_c^2/(m_c*R_wc) -H*k_c*T_c^2/(b_c*R_wc); ...
1/m s 0 0; ...
-H*T_c^2/(m*R_wc) 0 s-H*T_c^2/(m_c*R_wc) -H*k_c*T_c^2/(b_c*R_wc); ...
-H*T_c^2/(m*b_c*R_wc) 0 -H*T_c^2/(m_c*b_c*R_wc) s-(k_c*H*T_c^2-H*R_wc)/(b_c^2*R_wc)]);
G_vel = vpa(V_1/den,10)
G_vel_tf = tf([4.257211935 242.9349118 271.8731897 0.07907120546],[-1.0 19.8925608 269.8083056 54.43899276 0.01581424109]);
0 Comments
Accepted Answer
David Wilson
on 2 Dec 2019
How about:
[num,den] = numden(G_vel)
G_vel_tf = tf(sym2poly(num), sym2poly(den))
More Answers (0)
See Also
Categories
Find more on Financial Toolbox in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!