making coarse matrix from fine resolution matrix

11 views (last 30 days)
Hi, I am trying to make a coarse resolution matrix of 3600x1800 from a 8640x4320 matrix by summing up the elements of the matrix.
Hi am trying the following: However this doesnot work with fractions (here, 2.4)
%%%%Z1 is the original 8640x4320 matrix
abc = blockproc(Z1,[2.4,2.4],@(x)sum(x.data));
abc1 = blockproc(abc,[1,2.4],@(x)sum(x.data));

Accepted Answer

Matt J
Matt J on 23 Jan 2020
Edited: Matt J on 27 Jan 2020
A 3rd approach, more memory conserving and faster,.
Z1=randi(100,8640,4320);
u = 5; %upsampling factor
d = 12; %downsampling factor
t = d/u; %reduction factor
[m,n]=size(Z1);
L1=speye(m); L2=speye(round(m/t))/u;
R1=speye(n); R2=speye(round(n/t))/u;
L=repelem(L2,1,d) * repelem(L1,u,1);
R=(repelem(R2,1,d) * repelem(R1,u,1)).';
tic
abc4= L*(Z1*R);
toc
Note as well that the matrices L and R are reusable on other Z1 of the same size that one might wish to downsample later on.

More Answers (2)

Matt J
Matt J on 23 Jan 2020
Edited: Matt J on 23 Jan 2020
If you have the Image Processing Toolbox,
abc1=imresize(Z1,[3600,1800])
  10 Comments
Matt J
Matt J on 23 Jan 2020
Edited: Matt J on 23 Jan 2020
This should give proper agreement in the sums
abc3=imresize(Z1,1/2.4)*2.4^2;
or
abc3=imresize(Z1,1/2.4);
abc3=abc3/sum(abc3(:))*sum(Z1(:));

Sign in to comment.


SChow
SChow on 23 Jan 2020
Edited: SChow on 23 Jan 2020
scaling = 5; %%% I scale Z1 by factor of 5 so that sepblockfun works,
%%%%% sepblockfun is developed by MattJ and is available for
%downlaod at https://de.mathworks.com/matlabcentral/fileexchange/48089-separable-block-wise-operations
S = repelem (Z1 / scaling ^ 2, scaling, scaling); %% where S is 43200x21600
abc2 = sepblockfun (S, [12,12], 'sum' ); %%% abc2 is 3600x1800
  4 Comments
SChow
SChow on 10 Sep 2020
Edited: SChow on 10 Sep 2020
Hi @Matt J,
Is there a way to use sepblockfun if the matrix contains NaN values?
in other words, it does not seem to support functions - 'nansum' / 'nanmean'
Matt J
Matt J on 10 Sep 2020
Edited: Matt J on 10 Sep 2020
You can do,
S = sepblockfun( repelem (Z1 , scaling, 1) , [12,1], @nansum);
abc2 = sepblockfun( repelem (S, 1, scaling) , [1,12], @nansum)/scaling^2;
You cannot apply sepblockfun to nanmean directly, because nanmean is not separable, e.g.
>> A=rand(5); A(1:3)=nan
A =
NaN 0.9730 0.8253 0.8314 0.4168
NaN 0.6490 0.0835 0.8034 0.6569
NaN 0.8003 0.1332 0.0605 0.6280
0.6596 0.4538 0.1734 0.3993 0.2920
0.5186 0.4324 0.3909 0.5269 0.4317
>> nanmean(nanmean(A,1),2)
ans =
0.5163
>> nanmean(nanmean(A,2),1)
ans =
0.5142
However, you can implement block-wise nanmean indirectly by using the separability of nansum,
>> sepblockfun(A,[5,5],@nansum)./sepblockfun(~isnan(A),[5,5],@nansum)
ans =
0.5063
>> nanmean(A(:))
ans =
0.5063

Sign in to comment.

Categories

Find more on Images in Help Center and File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!