Info

This question is closed. Reopen it to edit or answer.

Matlab taking so much execution time

3 views (last 30 days)
AVM
AVM on 27 Jan 2020
Closed: MATLAB Answer Bot on 20 Aug 2021
I have a simple code here. But whenever I try to run this code, the system gets slower and start to hang frequently. Moreover, the run process seems to be never ending. Hence I forcefully shut down the pc several time. Pl , somebody see my code and solve the problem. Actually here, I am trying to get a 3d plot.
clc;clear;
syms theta phi b k alpha
alpha=1;
b=1;
sigma1=[0 1;1 0];
sigma2=[0 -1i;1i 0];
sigma3=[1 0;0 -1];
sigmap=1/2*(sigma1+1i*sigma2);
sigmam=1/2*(sigma1-1i*sigma2);
I=eye(2);
n=[sin(theta)*cos(phi) sin(theta)*sin(phi) cos(theta)];
a=sigma1*sin(theta)*cos(phi)+sigma2*sin(theta)*sin(phi)+sigma3*cos(theta);
d=kron(sigmap,sigmap)+kron(sigmam,sigmam);
h=1/2*alpha*b*kron(a,I)+k*d; %% a 4*4 matrix
[V,L]=eig(h);
u=V(:,1)./sqrt(sum(V(:,1).^2)); %%To make the normalization to the one of the eigen vector of h.
w=diff(u,phi); %% Derrivative of that eigen vector with respect to phi variable.
r=dot(u,w);
assume(theta>=0);
assume(phi>=0);
r=simplify(r,'Steps',100);
f=1/pi*1i*int(r,phi,0,2*pi);
f=simplify(f,'Steps',100);
ffcn=matlabFunction(f);
theta = linspace(0.001,4, 30);
k = linspace(0.001,10, 30);
[Th,K] = meshgrid(theta, k);
F=ffcn(Th,K);
figure
mesh(Th,K, F)
colormap(cool)
grid on
xlabel('\bf\theta','FontSize',14)
ylabel('\bf\alpha','FontSize',14)
zlabel('\bf\itf','FontSize',14)
  7 Comments
AVM
AVM on 30 Jan 2020
@walter: I was trying without any optimization in the following code according to your advice, but without optimisation is taking more than 1day to excute but the execution yet not completeed.. It's really painful for me. Pl help me.
clc;clear;
syms theta phi b k alpha
alpha=1;
b=1;
sigma1=[0 1;1 0];
sigma2=[0 -1i;1i 0];
sigma3=[1 0;0 -1];
sigmap=1/2*(sigma1+1i*sigma2);
sigmam=1/2*(sigma1-1i*sigma2);
I=eye(2);
n=[sin(theta)*cos(phi) sin(theta)*sin(phi) cos(theta)];
a=sigma1*sin(theta)*cos(phi)+sigma2*sin(theta)*sin(phi)+sigma3*cos(theta);
d=kron(sigmap,sigmap)+kron(sigmam,sigmam);
h=1/2*alpha*b*kron(a,I)+k*d; %% a 4*4 matrix
[V,L]=eig(h);
u=V(:,1)./sqrt(sum(V(:,1).^2)); %%To make the normalization to the one of the eigen vector of h.
w=diff(u,phi); %% Derrivative of that eigen vector with respect to phi variable.
r=dot(u,w);
f=1/pi*1i*int(r,phi,0,2*pi);
theta = linspace(0.001,4, 30);
k = linspace(0.001,10, 30);
[Th,K] = meshgrid(theta, k);
F=f(Th,K);
figure
mesh(Th,K, F)
colormap(cool)
grid on
xlabel('\bf\theta','FontSize',14)
ylabel('\bf\alpha','FontSize',14)
zlabel('\bf\itf','FontSize',14)
Walter Roberson
Walter Roberson on 30 Jan 2020
Shrug. Get yourself a much much faster computer. Something overclocked and cooled with liquid nitrogen perhaps.

Answers (1)

AVM
AVM on 28 Jan 2020
Thanks..okay,I am leaving it without any optimization (simplify() kind of thing) whole night.let see what happen...

This question is closed.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!