How to change color model of all pictures in image datastore?

3 views (last 30 days)
Hello everybody, I need help with a changing color model of pictures in a Image Datastore.
I've tried to change the color model with a transform database.
clc; clear; close all;
net = resnet101();
%% IMDS
rootFolder = 'cifar100Train';
categories = {'Dolphin','Rocket','Bed','Can','Pear'};
imds.train = imageDatastore(fullfile(rootFolder, categories), 'LabelSource', 'foldernames');
imds.train = splitEachLabel(imds.train, 2 , 'randomize');
auimds.train = augmentedImageDatastore(net.Layers(1).InputSize(1:2), imds.train);
Here comes the problem with transformFcn (function is defined below).
dsnew.train = transform(auimds.train, @transformFcn);
%% Changing layer of a CNN
lgraph = layerGraph(net);
newFCLayer = fullyConnectedLayer(5, 'Name', 'fc5');
lgraph = replaceLayer(lgraph,'fc1000',newFCLayer);
newClassLayer = classificationLayer('Name','new_classoutput');
lgraph = replaceLayer(lgraph,'ClassificationLayer_predictions',newClassLayer);
%% Training options
opts = trainingOptions('sgdm', ...
'InitialLearnRate',.001,...
'MaxEpochs',10, ...
'MiniBatchSize',64, ...
'Shuffle','every-epoch', ...
'Plots','training-progress');
CNN = trainNetwork(dsnew.train, lgraph, opts);
%% Changing color model via the transformFcn
function dataOut = transformFcn(dataIn)
dataOut = rgb2hsv(dataIn);
end
For color model change I've used rgb2hsv function. Matlab displays this error message:
Error using trainNetwork (line 170)
Invalid transform function defined on datastore.
Error in transferlearning (line 37)
CNN = trainNetwork(dsnew.train, lgraph, opts);
Caused by:
Error using nnet.internal.cnn.util.NetworkDataValidator/assertDatastoreHasResponses (line 140)
Invalid transform function defined on datastore.
Error using rgb2hsv>parseInputs (line 95)
MAP must be a Mx3 array.
I would love to find any effective solution for changing color model.
Thank you for any answer!
Martin

Accepted Answer

Martin Simunsky
Martin Simunsky on 20 Feb 2020
Edited: Martin Simunsky on 20 Feb 2020
I hope I've figured this problem with Transform datastore:
First error
Error using trainNetwork (line 170)
Invalid transform function defined on datastore.
Error in transferlearning (line 37)
CNN = trainNetwork(dsnew.train, lgraph, opts);
Caused by:
Error using nnet.internal.cnn.util.NetworkDataValidator/assertDatastoreHasResponses (line 140)
Invalid transform function defined on datastore.
Error using rgb2hsv>parseInputs (line 95)
MAP must be a Mx3 array.
was figured out by using im2uint8 function.
im2uint8(rgb2hsv(dataIn));
Second error
Error using trainNetwork (line 170)
Invalid training data. Responses must be nonempty.
was figured out thanks to this script in transformFcn file:
function dataOut = transformFcn(dataIn)
B = table2cell(dataIn);
NoImg = size(B,1);
for i=1:NoImg
B{i,1} = im2uint8(rgb2hsv(B{i,1}));
end
dataOut = cell2table(B);
end
In main file:
imds.train = imageDatastore(fullfile(trainDirectoryName, categories), 'LabelSource', 'foldernames');
imds.train = splitEachLabel(imds.train,5, 'randomize');
auimds.train = augmentedImageDatastore(sizeImg, imds.train);
dsnew.train = transform(auimds.train, @transformFcn);
dsnew.train.UnderlyingDatastore.MiniBatchSize = 10;
ReadFcn takes only one image, instead Transform datastore takes whole batch of images (size of this batch is defined in the last line: dsnew.train.UnderlyingDatastore.MiniBatchSize; default is 128).
Hope this helps :-)

More Answers (1)

Roshni Garnayak
Roshni Garnayak on 7 Feb 2020
Instead of using ‘transformFcn’, you can use the ‘ReadFcn’ parameter in the ImageDatastore object. You can define the colour space transformation in the @customreader.
For more information on how to do it, please refer the Properties section in the following link:
  1 Comment
Martin Simunsky
Martin Simunsky on 13 Feb 2020
ReadFcn parameter works
I've tried this option as well. But they say this:
"Using ReadFcn to transform or pre-process 2-D images is not recommended. For file formats recognized by imformats, specifying ReadFcn slows down the performance of imageDatastore. For more efficient ways to transform and pre-process images, see Preprocess Images for Deep Learning (Deep Learning Toolbox)." (1)
Howewer, after few attempts it works:
...
imds.train = imageDatastore(fullfile(trainDirectoryName, categories), 'LabelSource', 'foldernames');
imds.train = splitEachLabel(imds.train,5, 'randomize');
imds.train.ReadFcn = @transformFcn;
...
transformFcn file:
function dataOut = transformFcn(dataIn)
dataOut = imread(dataIn);
dataOut = im2uint8(rgb2hsv(dataOut));
end
transformFcn displays error
If I used transformFcn instead of ReadFcn in this way:
...
imds.train = imageDatastore(fullfile(trainDirectoryName, categories), 'LabelSource', 'foldernames');
imds.train = splitEachLabel(imds.train,5, 'randomize');
% imds.train.ReadFcn = @transformFcn;
dsnew.train = transform(imds.train, @transformFcn);
...
transformFcn file:
function dataOut = transformFcn(dataIn)
% dataOut = imread(dataIn);
dataOut = im2uint8(rgb2hsv(dataIn));
end
Matlab displays this error message in the beginning of training:
Error using trainNetwork (line 170)
Invalid training data. Responses must be nonempty.
Can anyone help me, please?

Sign in to comment.

Products


Release

R2019b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!