Simpson's 1/3 Rule Implementation Issue (Code Provided)
3 views (last 30 days)
Show older comments
I have written the following code to Implement Simpson's 1/3 Rule, but it does not seem to give the correct answer. I am unsure what I have done wrong in my code.
MATLAB CODE:
function Integration(a,b,x,n,true)
a=0; %Lower Integral Bound
b=1; %Upper Integral Bound
x=[a,.25,.5,.75,b];
n=4; %Even Number of Segments
f=zeros(n+1,1);
true=.602298; %True Value of Equation
h=(b-a)/n; %width of each segment
f(1)=(x(1)^0.1)*(1.2-x(1))*(1-exp(20*(x(1)-1))); %Value For Initial Bound
for i=2:n
f(i)=2*(x(i)^0.1)*(1.2-x(i))*(1-exp(20*(x(i)-1))); %Values for In-Between Bounds
end
f(n+1)=(x(n+1)^0.1)*(1.2-x(n+1))*(1-exp(20*(x(n+1)-1))); %Value for Final Bound
q=sum(f,'all');
I=(h/2)*(q); %Width Times Average Height
disp('USING TRAPEZOIDAL')
fprintf('I=')
disp(I)
et=abs((true-I)/true)*100;
fprintf('True Error=')
disp(et)
disp("USING SIMPSON'S 1/3")
f2=zeros(n,1);
f2(1)=(x(1)^0.1)*(1.2-x(1))*(1-exp(20*(x(1)-1)));
for j=2:2:n-2
f2(j)=2*(x(j)^0.1)*(1.2-x(j))*(1-exp(20*(x(j)-1)));
end
for j=3:2:n-1
f2(j)=4*(x(j)^0.1)*(1.2-x(j))*(1-exp(20*(x(j)-1)));
end
f2(n)=(x(n)^0.1)*(1.2-x(n))*(1-exp(20*(x(n)-1)));
v=sum(f2,'all');
I2=(h/3)*v;
fprintf('I=')
disp(I2)
%ea=abs((true-I2)/true)*100;
%printf('True Error=')
%disp(ea)
%Nobody Cares, Work Harder
%Keep Hammering
end
0 Comments
Accepted Answer
David Hill
on 2 Apr 2020
The following function might help.
function o = simp(a,b,f,n)
x=linspace(b,a,n+1);
o=0;
for k=1:n
xx=[x(k);(x(k)+x(k+1))/2;x(k+1)];
y=f(xx);
c=([xx.^2,xx,ones(3,1)]\y)';
p=polyint(c);
o=o+polyval(p,x(k))-polyval(p,x(k+1));
end
Evaluate the function using your equation desiring integration.
f=@(x)x.^.1.*(1.2-x).*(1-exp(20*(x-1)));
output=simp(0,1,f,4);
0 Comments
More Answers (0)
See Also
Categories
Find more on Numerical Integration and Differential Equations in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!